首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
化学工业   27篇
金属工艺   5篇
机械仪表   2篇
建筑科学   2篇
能源动力   5篇
轻工业   3篇
石油天然气   1篇
无线电   5篇
一般工业技术   33篇
冶金工业   5篇
自动化技术   24篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
91.
Multilayered polymer films are increasingly used in the daily life, but their macroscopic properties are always limited by the layer–layer interfacial compatibility. In this work, the influence of interface modification through in situ layer–layer interfacial reaction during a multilayered assembly is revealed from micro‐ to nanolayer films, based on maleated poly(vinylidene fluoride) and polyamide‐6. In the presence of interfacial reaction and confinement, layer architecture and microstructure are highly dependent on the number of layers. Specifically, for nanolayer films having smaller layer thicknesses and higher reaction extent, layer integrity is reduced with the occurrence of interfacial instabilities. Depending on the microstructural evolution from multilayer assembly, those films exhibit quantitatively different extensional rheological and dielectric properties from micro‐ to nanolayers. More importantly, dielectric spectroscopy reveals the contribution of copolymer‐rich interphases to the dielectric performance of micro/nanolayered films. Additionally, charge transport dynamics in nanolayered films also differ significantly from their microlayered counterparts. They are attributed to the strong dependence of interfacial reaction extent and resulting microstructure on the number of layers and layer thicknesses. This work clearly illustrates how the control of layer–layer interfacial reaction in micro/nanolayer assembly can tune the interfacial, microstructure, and macroscopic properties of multilayered products.  相似文献   
92.
Nep1 methylates the hypermodified ψ1191 base of 18S rRNA and has an additional essential function during ribosome biogenesis. It is strongly conserved in eukaryotes and a point mutation causes the human Bowen-Conradi syndrome. To identify Δnep1-specific genetic interactions, viable deletions were screened genome-wide (SGA). Due to its essential function, we used, for the first time, query strain (Δnep1) with two additive suppressor conditions (mcRPS19B, nop6-1). Nep1 interacting genes correspond to ribosome biogenesis (RPS18A, RPS18B, RRP8, EFG1, UTP30), to ribosome quality control (UBP3, BRE5, UBP6) and to ribosome functional control (DOM34, no-go decay). Deletions in ribosome quality and functional control genes were synthetically sick with Δnep1. They cope with malfunctions and the respective deletions strengthen the Δnep1 growth deficiency. Except for Δrps18b, deletions in the identified ribosome biogenesis genes were synthetically lethal with Δnep1. While the synthetic lethalities of Δrrp8 and Δefg1 may result from additive defects, the Δutp30 deletion seems to be in close functional relationship. The Δutp30 deletion itself has no phenotype but it enforced all nep1-1(ts) mutant phenotypes. Furthermore, its overexpression partially restored the nep1-1(ts) growth deficiency. Our genetic and biochemical data suggest that Utp30 and Nep1 act together during pre-ribosomal complex formation and, along with Rps18, provide the surface for the Rps19 assembly to the 90S pre-ribosome.  相似文献   
93.
Phase transitions of polymeric materials are accompanied by changes in density as a function of temperature. Being able to measure these changes in polymeric systems in one, two or three dimensions on the nanoscopic length‐scale is a challenge, but it would provide a simple route to assess phase transitions in nanoscopically confined systems. It is shown that the measurement of the dielectric permittivity in the high frequency limit (in spectral regions not affected by dielectric dispersions) offers an effective and very sensitive means to assess density fluctuations, and hence phase transitions, in nanoscopic systems. The sensitivity of this approach is demonstrated by assessing the phase transition behavior of ferroelectric polymer nanowires confined within alumina membranes. No significant shifts in the Curie transition are observed down to pore diameters as small as 15 nm.  相似文献   
94.
Temperature dependence of dielectric properties of nematic liquid crystals are investigated for two types of devices: wide temperature range liquid crystal (LC) displays and capacitor temperature sensor. Both real and imaginary components of the dielectric constant have been measured in wide frequency and temperature range including t < 0 °C as well as versus the angle θ between the directions of both magnetic and electric field in the measuring scheme. Some physical parameters of the nematic LC (NLC) dielectric relaxation have been determined. Effective values of the LC dielectric permittivity with different values of the LC pretilt angles in different parts of a complex LC cell have been simulated.  相似文献   
95.
In this paper we discuss decay of superfluid currents in boson lattice systems due to quantum tunneling and thermal activation mechanisms. We derive asymptotic expressions for the decay rate near the critical current in two regimes, deep in the superfluid phase and close to the superfluid-Mott insulator transition. The broadening of the transition at the critical current due to these decay mechanisms is more pronounced at lower dimensions. We also find that the crossover temperature below which quantum decay dominates is experimentally accessible in most cases. Finally, we discuss the dynamics of the current decay and point out the difference between low and high currents.  相似文献   
96.
We implemented an experimentally observed orthogonal arrangement of theta and gamma generation circuitry in septotemporal and lamellar dimensions is a two-dimensional model of hippocampus. The model includes three types of cells: pyramidal, basket, and oriens lacunosum-moleculare (OLM) neurons. In this reduced model, application of continuous electric fields allowed us to switch between theta, gamma and mixed theta-gamma regimes without additional pharmacological manipulation. Electric field effects on individual neurons were modeled based on experimental data. Network simulation results predict a flexible experimental technique, which would employ adaptive subthreshold electric fields to continuously modulate neuronal ensemble activity, and can be used for testing cognitive correlates of oscillatory rhythms as well as for suppressing epileptiform activity.  相似文献   
97.
ABSTRACT: This special issue of Nanoscale Research Letters is a collection of selected papers presented at the Nano and Giga Challenges in Electronics, Photonics and Renewable Energy (NGC2011) conference in Moscow and Zelenograd which addresses both theoretical and experimental achievements and provide a stimulating outlook for technological developments in these highly topical fields of research.  相似文献   
98.
99.
100.
Abstract— V‐shaped electro‐optical response is shown, both theoretically and experimentally, to be an inherent property of a deformed‐helix ferroelectric liquid‐crystal cell (DHFLC) under a special choice of the applied rectangular alternating‐electric‐field waveform, frequency, and cell geometry. In contrast to other known V‐shaped ferroelectric liquid‐crystal (FLC) modes, the discovered V‐shaped switching is observed in a broadband frequency range including 1 kHz, and not at a certain characteristic frequency. This type of V‐shaped switching allows for a drastic increase in the operating frequency of field‐sequential‐color (FSC) LCD cells in comparison with fast nematic liquid‐crystal (NLC) modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号