首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2143篇
  免费   46篇
  国内免费   1篇
电工技术   28篇
综合类   3篇
化学工业   320篇
金属工艺   30篇
机械仪表   44篇
建筑科学   82篇
矿业工程   8篇
能源动力   33篇
轻工业   183篇
水利工程   10篇
石油天然气   2篇
无线电   266篇
一般工业技术   300篇
冶金工业   657篇
原子能技术   20篇
自动化技术   204篇
  2023年   18篇
  2022年   29篇
  2021年   39篇
  2020年   21篇
  2019年   26篇
  2018年   30篇
  2017年   31篇
  2016年   44篇
  2015年   38篇
  2014年   39篇
  2013年   84篇
  2012年   64篇
  2011年   86篇
  2010年   71篇
  2009年   69篇
  2008年   78篇
  2007年   71篇
  2006年   56篇
  2005年   69篇
  2004年   31篇
  2003年   28篇
  2002年   44篇
  2001年   41篇
  2000年   27篇
  1999年   45篇
  1998年   157篇
  1997年   106篇
  1996年   79篇
  1995年   52篇
  1994年   46篇
  1993年   44篇
  1992年   28篇
  1991年   31篇
  1990年   36篇
  1989年   37篇
  1988年   26篇
  1987年   22篇
  1986年   20篇
  1985年   19篇
  1984年   14篇
  1983年   17篇
  1982年   13篇
  1981年   17篇
  1980年   12篇
  1979年   17篇
  1978年   21篇
  1977年   14篇
  1976年   26篇
  1971年   19篇
  1970年   14篇
排序方式: 共有2190条查询结果,搜索用时 15 毫秒
71.
The Ca2+ activated K+ channel KCa3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms ( 9 a ) and with a F-atom and a methoxy moiety ( 9 b ) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.  相似文献   
72.
Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 μm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7β-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.  相似文献   
73.
We present an interesting processing route for obtaining alumina/mullite‐based ceramics with controlled porosity and airflow resistance leading to promising microstructures for application as sound absorbers. The use of ceramic materials aims for potential applications where high temperatures or corrosive atmospheres are predominant, e.g., in combustion chambers of gas turbines. For the production of the porous ceramics we combined freeze gelation and sacrificial templating processes to produce near‐net‐shaped parts with low shrinkage (<3%) based on environmental‐friendly and low cost conditions. The obtained microstructure presents a bimodal pore size distribution, with small pores derived from the freeze gelation process (~30 μm) connecting large pores (2–5 mm diameter) originated from the expanded polystyrene template particles. These connections, called “windows” in this study, show a significant impact on the sound absorption properties, allowing the pressure diffusion effect to take place, resulting in a significant improvement of the sound absorption coefficient. By varying the template particle content and the slurry solid content, it is possible to control the sound absorption behavior at different frequencies of the open‐celled ceramics. These ceramics feature a high open porosity, from 77% to 82%, combined with sufficient compressive strength ranging from 0.27 to 0.68 MPa and sound absorption coefficients of 0.30–0.99, representing a highly promising combination of properties for noise control and reduction at corrosive environments and high temperatures.  相似文献   
74.
We synthesized three peptides, a D-polyarginyl peptide (r8(FITC)), a Tat peptide (Tat(FITC)), and a control peptide (Cp(FITC)) and attached each to amino-CLIO, a nanoparticle 30 nm in diameter. We then examined the effective permeability, Peff, of all six materials through CaCo-2 monolayers. The transport of peptide-nanoparticles was characterized by a lag phase (0-8 h) and a steady-state phase (9-27 h). The steady-state Peff values for peptides were in the order r8(FITC)>Tat(FITC)=Cp(FITC). When r8(FITC) and Tat(FITC) peptides were attached to the nanoparticle, they conferred their propensity to traverse cell monolayers onto the nanoparticle, whereas Cp(FITC) did not. Thus, when the r8(FITC) peptide was attached to the amino-CLIO nanoparticle, the resulting peptide-nanoparticle had a Peff similar to that of this poly-D-arginyl peptide alone. The Peff of r8(FITC)-CLIO (MW approximately 1000 kDa) was similar to that of mannitol (MW=182 Da), a poorly transported reference substance, with a far lower molecular weight. These results are the first to indicate that the modification of nanoparticles by attachment of membrane-translocating sequence-based peptides can alter nanoparticle transport through monolayers. This suggests that the surface modification of nanoparticles might be a general strategy for enhancing the permeability of drugs and that high-permeability nanoparticle-based therapeutics can be useful in selected pharmaceutical applications.  相似文献   
75.
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.  相似文献   
76.
Over the past 40 years, development of Ceramic Matrix Composites (CMCs) has focused mainly on the improvement of material performance and optimization of cost-efficient production routes. Recently, more fields of application have opened up for CMCs, in which environmental impacts are relevant. These impacts have barely been investigated so far but receive growing interest due to increasing awareness of the environmental consequences. Our innovative approach frames material properties in relation to environmental impacts (e.g., global warming potential in CO2 emission) by varying process parameters to balance optimum performance against environmental considerations. First, the process of wet filament winding has been investigated up to the Carbon Fiber Reinforced Plastic (CFRP) state by changing both the curing and tempering temperatures. During the production of CFRP plates, mass and energy flows were tracked in each step. Three point-bending and interlaminar shear tests have been performed on the resulting samples to identify basic mechanical properties. The environmental impacts are determined by a cradle-to-gate Life Cycle Assessment (LCA), using the software SimaPro. The resulting tradeoffs between mechanical properties and environmental impacts show nonlinear behavior, thus revealing optimum points above which improved mechanical properties are associated with significantly higher CO2 emissions.  相似文献   
77.
A graphics robot simulator designed for an IBM PC/XT/AT or PS/2 personal computer is presented. The simulator is a terminate-and-stay resident (TSR) program that runs in the background and intercepts commands that would normally go to the robot controller through the COM1 serial communication device. With the use of the simulator, students can develop and test robot control programs offline without a physical robot present, using the language of their choice. The status of the simulated robot is available through a 3-D graphics display and a one-line text window, each of which can be activated from the keyboard or from within a user program. Data files are used to specify the robot to be simulated and the environment or workcell within which it is to operate. Currently supported robots include the Rhino XR-3 educational robot and the Adept One and Inteledex 660 industrial robots. The workcell features an overhead camera and objects that can be sensed by the camera and manipulated by the robot.<>  相似文献   
78.
We report about the dynamic behavior of a nanometer-scale amorphous intergranular film (IGF) in a Si3N4 ceramic by an in situ heating experiment in a high-resolution transmission electron microscopy (HRTEM). During the experiment the IGF gradually vanishes at 820 °C accompanied by the formation of crystal planes within the IGF. The IGF reappears after cooling back to room temperature. The results cannot be explained within the framework of a force balance model. We argue that the dynamic behavior of the IGF in our experiment originates from the open system observed.  相似文献   
79.
Thanks to their high energy density and thermal conductivity, metallic Phase Change Materials (mPCM) have shown great potential to improve the performance of thermal energy storage systems. However, the commercial application of mPCM is still limited due to their corrosion behavior with conventional container materials. This work first addresses on a fundamental level, whether carbon-based composite-ceramics are suitable for corrosion critical components in a thermal storage system. The compatibility between the mPCM AlSi12 and the Liquid Silicon Infiltration (LSI)-based carbon fiber reinforced silicon carbide (C/C-SiC) composite is then investigated via contact angle measurements, microstructure analysis, and mechanical testing after exposure. The results reveal that the C/C-SiC composite maintains its mechanical properties and microstructure after exposure in the strongly corrosive mPCM. Based on these results, efforts were made to design and manufacture a container out of C/C-SiC for the housing of mPCM in vehicle application. The stability of the component filled with mPCM was proven nondestructively via computer tomography (CT). Successful thermal input- and output as well as thermal storage ability were demonstrated using a system calorimeter under conditions similar to the application. The investigated C/C-SiC composite has significant application potential as a structural material for thermal energy storage systems with mPCM.  相似文献   
80.
Acute generalized exanthematous pustulosis (AGEP) is a severe, usually drug-related reaction, characterized by an acute onset of mainly small non-follicular pustules on an erythematous base and spontaneous resolution usually within two weeks. Systemic involvement occurs in about 20% of cases. The course is mostly benign, and only in rare cases complications lead to life-threatening situations. Recent studies highlight the importance of genetic variations in interleukin-36 receptor antagonist gene (IL-36RN) in the pathogenesis of this disease. The physiopathology of AGEP remains unclear, but an involvement of innate and acquired immune cells together with resident cells (keratinocytes), which recruit and activate neutrophils via production of cytokines/chemokines such as IL-17, IL-36, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNFα) and chemokine (C-X-C motif) ligand 8 (CXCL8)/IL-8, has been postulated. Treatment is based on the removal of the causative drug, supportive care, infection prevention and use of potent topical or systemic steroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号