首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
化学工业   37篇
金属工艺   1篇
机械仪表   3篇
能源动力   2篇
轻工业   9篇
石油天然气   2篇
无线电   7篇
一般工业技术   15篇
自动化技术   12篇
  2024年   3篇
  2023年   1篇
  2022年   19篇
  2021年   13篇
  2020年   11篇
  2019年   1篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有88条查询结果,搜索用时 0 毫秒
31.
    
Ultrasmall, crystalline, and dispersible NiO nanoparticles are prepared for the first time, and it is shown that they are promising candidates as catalysts for electrochemical water oxidation. Using a solvothermal reaction in tert‐butanol, very small nickel oxide nanocrystals can be made with sizes tunable from 2.5 to 5 nm and a narrow particle size distribution. The crystals are perfectly dispersible in ethanol even after drying, giving stable transparent colloidal dispersions. The structure of the nanocrystals corresponds to phase‐pure stoichiometric nickel(ii ) oxide with a partially oxidized surface exhibiting Ni(iii ) states. The 3.3 nm nanoparticles demonstrate a remarkably high turn‐over frequency of 0.29 s–1 at an overpotential of g = 300 mV for electrochemical water oxidation, outperforming even expensive rare earth iridium oxide catalysts. The unique features of these NiO nanocrystals provide great potential for the preparation of novel composite materials with applications in the field of (photo)electrochemical water splitting. The dispersed colloidal solutions may also find other applications, such as the preparation of uniform hole‐conducting layers for organic solar cells.  相似文献   
32.
The unique properties of green fluorescent protein (GFP) have been harnessed in a variety of bioimaging techniques, revolutionizing many areas of the life sciences. Molecular-level understanding of the underlying photophysics provides an advantage in the design of new fluorescent proteins (FPs) with improved properties; however, because of its complexity, many aspects of the GFP photocycle remain unknown. In this Account, we discuss computational studies of FPs and their chromophores that provide qualitative insights into mechanistic details of their photocycle and the structural basis for their optical properties. In a reductionist framework, studies of well-defined model systems (such as isolated chromophores) help to understand their intrinsic properties, while calculations including protein matrix and/or solvent demonstrate, on the atomic level, how these properties are modulated by the environment. An interesting feature of several anionic FP chromophores in the gas phase is their low electron detachment energy. For example, the bright excited ππ* state of the model GFP chromophore (2.6 eV) lies above the electron detachment continuum (2.5 eV). Thus, the excited state is metastable with respect to electron detachment. This autoionizing character needs to be taken into account in interpreting gas-phase measurements and is very difficult to describe computationally. Solvation (and even microsolvation by a single water molecule) stabilizes the anionic states enough such that the resonance excited state becomes bound. However, even in stabilizing environments (such as protein or solution), the anionic chromophores have relatively low oxidation potentials and can act as light-induced electron donors. Protein appears to affect excitation energies very little (<0.1 eV), but alters ionization or electron detachment energies by several electron volts. Solvents (especially polar ones) have a pronounced effect on the chromophore's electronic states; for example, the absorption wavelength changes considerably, the ground-state barrier for cis-trans isomerization is reduced, and fluorescence quantum yield drops dramatically. Calculations reveal that these effects can be explained in terms of electrostatic interactions and polarization, as well as specific interactions such as hydrogen bonding. The availability of efficient computer implementations of predictive electronic structure methods is essential. Important challenges include developing faster codes (to enable better equilibrium sampling and excited-state dynamics modeling), creating algorithms for properties calculations (such as nonlinear optical properties), extending standard excited-state methods to autoionizing (resonance) states, and developing accurate QM/MM schemes. The results of sophisticated first-principle calculations can be interpreted in terms of simpler, qualitative molecular orbital models to explain general trends. In particular, an essential feature of the anionic GFP chromophore is an almost perfect resonance (mesomeric) interaction between two Lewis structures, giving rise to charge delocalization, bond-order scrambling, and, most importantly, allylic frontier molecular orbitals spanning the methine bridge. We demonstrate that a three-center Hückel-like model provides a useful framework for understanding properties of FPs. It can explain changes in absorption wavelength upon protonation or other structural modifications of the chromophore, the magnitude of transition dipole moment, barriers to isomerization, and even non-Condon effects in one- and two-photon absorption.  相似文献   
33.
This work determines the radical scavenging activity of antioxidants and berry extracts based on the heat generated during their reaction with hydrogen peroxide, under isothermal condition (25 °C). After addition of H2O2 to a water solution containing antioxidants, an exothermic heat flow appeared. After an initial damping time, the signal decayed exponentially, following a first-order kinetic. Through an iterative fitting routine, both thermodynamic (ΔH) and kinetic (k) information were achieved. Such approach was applied toward relevant food antioxidants, revealing that the fastest reactivity (k) was for tannic acid > gallic acid > caffeic acid > ascorbic acid. Interestingly, k was inversely correlated with ΔH (r = ?0.96) and with the DPPH test (r = ?0.98). Apparently, strong radical scavengers show faster kinetics and lower ΔH-values, as expected, respectively, from a high reactivity toward peroxyl radical and efficient delocalization capacity. Such approach was finally applied to berry extracts (mixed grape seed and skin; chokeberries; grape seed; goji berries). The resulting ΔH-values were correlated with three indices, namely, total phenol, amperometry, and DPPH test. However, k-values largely deviated from these indices. Such discrepancy was explained considering that none of these indices is a “true” measure of the kinetic of the reaction, but only express an apparent concentration. Conversely, reaction calorimetry provides directly and simultaneously both thermodynamic and kinetic properties of the radical scavenging reactivity of antioxidants or natural extracts.  相似文献   
34.
Journal of Computer and Systems Sciences International - We consider a mathematical model of a horizontal-axis wind-energy unit in which Savonius rotors are used instead of classical blades. The...  相似文献   
35.
Journal of Computer and Systems Sciences International - We model movements of a person swinging on a swing. We consider a flat three-link hinged mechanism as the main mechanical model of the...  相似文献   
36.
Journal of Computer and Systems Sciences International - We consider a small device for converting the medium’s flow energy, which is designed based on the use of a crank mechanism. A blade...  相似文献   
37.
    
The synthesis of crystalline, nonagglomerated, and perfectly dispersible Co3O4 nanoparticles with an average size of 3–7 nm using a solvothermal reaction in tert‐butanol is reported. The very small size and high dispersibility of the Co3O4 nanoparticles allow for their homogeneous deposition on mesoporous hematite layers serving as the photoactive absorber in the light‐driven water splitting reaction. This surface treatment leads to a striking photocurrent increase. While the enhancement of hematite photoanode performance by cobalt oxides is known, the preformation and subsequent application of well‐defined cobalt oxide nanoparticles are novel and allow for the treatment of arbitrarily complex hematite morphologies. Photoelectrochemical and transient absorption spectroscopy studies show that this enhanced performance is due to the suppression of surface electron–hole recombination on time scales of milliseconds to seconds.  相似文献   
38.
    
The yeast Saccharomyces cerevisiae is widely used in industrial biotechnology for the production of fuels, chemicals, food ingredients, food and beverages, and pharmaceuticals. To obtain high-performing strains for such bioprocesses, it is often necessary to test tens or even hundreds of metabolic engineering targets, preferably in combinations, to account for synergistic and antagonistic effects. Here, we present a method that allows simultaneous perturbation of multiple selected genetic targets by combining the advantage of CRISPR/Cas9, in vivo recombination, USER assembly and RNA interference. CRISPR/Cas9 introduces a double-strand break in a specific genomic region, where multiexpression constructs combined with the knockdown constructs are simultaneously integrated by homologous recombination. We show the applicability of the method by improving cis,cis-muconic acid production in S. cerevisiae through simultaneous manipulation of several metabolic engineering targets. The method can accelerate metabolic engineering efforts for the construction of future cell factories.  相似文献   
39.
40.
    
Tear samples collected from patients with central retinal vein occlusion (CRVO; n = 28) and healthy volunteers (n = 29) were analyzed using a proteomic label-free absolute quantitative approach. A large proportion (458 proteins with a frequency > 0.6) of tear proteomes was found to be shared between the study groups. Comparative proteomic analysis revealed 29 proteins (p < 0.05) significantly differed between CRVO patients and the control group. Among them, S100A6 (log (2) FC = 1.11, p < 0.001), S100A8 (log (2) FC = 2.45, p < 0.001), S100A9 (log2 (FC) = 2.08, p < 0.001), and mesothelin ((log2 (FC) = 0.82, p < 0.001) were the most abundantly represented upregulated proteins, and β2-microglobulin was the most downregulated protein (log2 (FC) = −2.13, p < 0.001). The selected up- and downregulated proteins were gathered to customize a map of CRVO-related critical protein interactions with quantitative properties. The customized map (FDR < 0.01) revealed inflammation, impairment of retinal hemostasis, and immune response as the main set of processes associated with CRVO ischemic condition. The semantic analysis displayed the prevalence of core biological processes covering dysregulation of mitochondrial organization and utilization of improperly or topologically incorrect folded proteins as a consequence of oxidative stress, and escalating of the ischemic condition caused by the local retinal hemostasis dysregulation. The most significantly different proteins (S100A6, S100A8, S100A9, MSLN, and β2-microglobulin) were applied for the ROC analysis, and their AUC varied from 0.772 to 0.952, suggesting probable association with the CRVO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号