首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   10篇
电工技术   1篇
化学工业   33篇
金属工艺   5篇
机械仪表   4篇
建筑科学   36篇
能源动力   9篇
轻工业   7篇
水利工程   1篇
石油天然气   2篇
无线电   15篇
一般工业技术   26篇
冶金工业   7篇
原子能技术   2篇
自动化技术   18篇
  2024年   1篇
  2023年   6篇
  2022年   8篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
71.
Microcrystalline indium oxide (InOx) films with thickness of 120–1600 nm were prepared by dc reactive magnetron sputtering in various mixtures of oxygen in argon at room temperature. The depositions were carried out onto Corning 7059 glass and silicon substrates. The conductivity of the as-deposited films can change in a controllable and fully reversible manner by about six orders of magnitude by alternately exposing the films to ultraviolet (UV) light (hv≥3.5eV) in vacuum and reoxidizing them in ozone. The microstructure of the films was investigated using transmission electron microscopy (TEM) and electron diffraction. For this purpose, films with a thickness of about 100 nm were deposited onto NaCl substrates. The surface and depth composition of the films were examined using Auger electron spectroscopy (AES) combined with depth profiling analysis. The depth profiles showed that all the films exhibit an extremely good in-depth uniformity, all the way to the interface with the glass substrate, regardless of their thickness. Quantitative Auger and energy dispersive x-ray (EDX) analyses were employed to determine the stoichiometry of the films. An oxygen deficiency of 2–5% has been observed with respect to the stoichiometric composition. The effects of film thickness and oxygen content in the sputtering gas on the stoichiometry were examined. Both AES and EDX analyses confirmed that the stoichiometry is invariant for these parameters.  相似文献   
72.
Ion etching of surfaces combined with detection of secondary events (particles or radiation emitted) are used for depth profiling of samples with interesting features at-, near-, or somewhat below the surface. These methods are destructive and relatively slow, and compete with non-destructive methods like Rutherford backscattering spectroscopy, energy-dispersive X-ray spectroscopy in the scanning electron microscope or angle-resolved photoemission spectroscopy, which are non-destructive and relatively faster methods. In this work we have concentrated on the use of noble gas ion sputtering with low-energy beams in combination with electron excited Auger electron spectroscopy and imaging for analysis of nanostructured and microstructured samples. No attempt will be made here to justify this method over the other methods, as their relative merits depend on the nature of the sample and the problem at hand. We have thus chosen to study samples and problems for which this technique would be obvious to use. This work is also aimed at providing practical standards and guidelines (“metrology”) for the use of the technique in the context of industrial nanotechnology. The use of Auger electron spectroscopy instead of photoemission spectroscopy is preferred for laterally non-uniform samples due to the presently better resolution capabilities of electron beams and narrower information depths of typical Auger electron transitions. The use of Auger electrons for concentration sampling, and low-energy beams of noble gas ions for sputtering, reduces the adverse influence of atomic mixing. In this report two systems are intensively studied with sputter profiling in combination with Auger electron spectroscopy and scanning electron imaging: a hard disk and a surface of a stainless-steel sample.  相似文献   
73.
Loss of an eye or a disfigured eye has a far-reaching impact on an individual's psyche'. Additionally it affects one's social and professional life. Cosmetic rehabilitation with custom made prosthetic devices gives such individuals professional and social acceptance and alleviates problems. This article aims at enhance awareness of the cosmetic benefits of custom designed ocular prosthesis. Ocularistry, the science of making ocular prosthesis, has undergone phenomenal growth in recent times. Ocularistry is fast evolving in India. "Ocularist" is the skilled individual involved in fabricating the ocular prosthesis.  相似文献   
74.
Single‐phase multiferroic Ba(Fe0.67Ce0.33)0.01Ti0.99O3 (BFTO:Ce) and Ba(Fe0.67La0.33)0.01Ti0.99O3 (BFTO:La) nanostructures were synthesized by a hydrothermal method (180°C/48 h). Rietveld refinement of X‐ray diffraction could confirm crystalline phase and lattice deformation by Ce, La into BFTO. The Ce and La doping induce nanoaggregation‐type BFTO nanostructural product due to their ionic size effect and chemical behavior with OH? ions. Raman active modes show tetragonal phase and defects due to vacancies in the BFTO lattice. Photoluminescence spectrum involves multiple visible emissions due to defects/vacancies. The observed ferroelectric polarization is enhanced due to shape/size effect of nanoparticles, lattice distortion, and filling of d orbital in the perovskite BaTiO3. The room‐temperature magnetic behavior is described due to antiferromagnetic interactions that strengthen by Ce and La doping. The zero‐field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. Dynamic magnetoelectric coupling was investigated, and maximum longitudinal magnetoelectric coefficient is 62.65 and 49.79 mV/cmOe, respectively, measured for BFTO:Ce and BFTO:La. The magnetocapacitance measurements induce negative values that described in terms of magnetoresistance and magnetic phase transition effects. The influence of oxygen vacancy on multiferroicity is evaluated by valance states of O ions.  相似文献   
75.
Poor or inefficient lubrication often gives rise to high friction and wear losses in machine components, which adversely affect their performance, efficiency, and durability. Many approaches are being explored to enhance the antifriction and antiwear properties of sliding machine components. In this study, the antifriction and antiwear properties of carbon spheres, synthesized from plastic waste by an autogenic process, were investigated as an additive to a poly-alpha-olefin (PAO-4 grade) oil. When dispersed at 1 wt% concentration, the carbon spheres reduced both friction and wear under boundary-lubricated sliding conditions. In particular, the reduction in wear was quite dramatic and appeared to be enabled by the formation of a fairly thick (≈200 nm) carbon-rich boundary film, the formation of which is attributed to tribochemical interactions between the carbon particles and sliding contact surfaces.  相似文献   
76.
We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process, molten Si totally or partly infiltrates the remaining open regions. This process forms a dense material with cubic (β-)SiC crystallites, of which the majority is imbedded in amorphous Si. The synthesis of preshaped “sprocket” elements demonstrates that desired shapes of such a dense SiC/Si composite ceramic material can be achieved, thus suggesting new industrial applications.The structure and composition of numerous as-synthesized samples were characterized in detail by using a wide range of techniques. Wear and friction properties were also investigated, with polished samples. The properties found for the present samples are very promising for abrasive applications and for new generation brake systems.  相似文献   
77.
78.
In a greenhouse experiment the response of chickpea (Cicer arietinum) to zinc fertilization was examined using 27 soils from the semi-arid tropics. The critical level of DTPA extractable soil Zn was evaluated. Zinc additions to the soil increased the dry matter yield of six weeks old plant shoot, grain and straw significantly at the 5 mg kg–1 level, but tended to decrease it at the 10 mg kg–1 level.The DTPA extractable Zn of the soils ranged from 0.28 to 1.75 ppm and was negatively correlated at 1 per cent level with pH (r = – 0.81) and positively with organic carbon (r = 0.79) and Olsen's P (r = 0.63). The per cent yield increase or decrease over zero zinc ranged from 67 to – 16 in respect of grain yield and was positively correlated with available Zn (r = 0.86**). Zinc concentration in plants was greatly increased with the application of Zn and accumulation of Zn was higher in grain than straw. The critical level of available zinc in soil below which plant response to Zn fertilization may be expected was 0.48 mg Zn kg–1 soil. Soils between 0.48 to 0.70 mg kg–1 of DTPA extractable Zn appear boarderline and a negative response to applied Zn was observed in soils of high Zn category. The results show the suitability of DTPA soil test for demarcating soils on the basis of plant response to zinc fertilization.  相似文献   
79.
The SARS-CoV-2 virus has shown increased ability to mutate over the past two years, especially in the regions of the spike protein and receptor binding sites. Omicron (B.1.1.529) is the fifth variant of concern (VOC) after the emergence of the Alpha, Beta, Gamma, and Delta VOCs of SARS-CoV-2. This new variant has now circulated in 128 countries and according to the Global Initiative on Sharing All Influenza Data (GISAID), these 128 countries have shared 650,657 Omicron genome sequences as of 26 January, 2022. In this article, we highlight the real challenges of Omicron and its different lineages.  相似文献   
80.
Nowadays, multi-element alloys are preferred over binary alloys for application point of view. The hydrogenation properties strongly depend on the thermodynamic, structural and electronic properties of the alloys. At present, no model is available which can predict the hydrogen storage properties of the multi-element alloy, before actual synthesis of the alloy. In the present investigation, efforts are made to develop a theoretical mathematical model to predict the hydrogenation properties of multi-element AB5-type metal hydride. The present investigation deals with the various electronic parameters which may affect the hydrogenation characteristics of the metal hydride. Based on all such parameters, an electronic factor has been proposed for AB5-type alloys. Electronic factor has been combined with the structural and thermodynamical factor to propose a new combined factor, which was further correlated with the hydrogen storage capacity of the alloy. Atomic radius and electronic configuration of substituted elements in the multi-element AB5-type hydrogen storage alloy have been found as key players to predict the hydrogenation properties of the alloys before synthesis. It has been shown that in the case of alloy series with multiple substitutions, the combined factor is more relevant in deciding the hydrogen storage capacity in comparison to electronic factor alone. Combined factor is directly proportional to the hydrogen storage capacity. All the three factors thermodynamic, structural and electronic together may lead to the prediction of pressure-composition isotherm of the multi-element AB5-type hydrogen storage alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号