首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   85篇
电工技术   3篇
综合类   3篇
化学工业   165篇
金属工艺   16篇
机械仪表   13篇
建筑科学   30篇
矿业工程   1篇
能源动力   43篇
轻工业   53篇
水利工程   12篇
石油天然气   2篇
无线电   51篇
一般工业技术   189篇
冶金工业   133篇
原子能技术   6篇
自动化技术   81篇
  2023年   15篇
  2022年   21篇
  2021年   27篇
  2020年   26篇
  2019年   27篇
  2018年   44篇
  2017年   34篇
  2016年   40篇
  2015年   22篇
  2014年   44篇
  2013年   51篇
  2012年   70篇
  2011年   61篇
  2010年   47篇
  2009年   31篇
  2008年   29篇
  2007年   32篇
  2006年   23篇
  2005年   18篇
  2004年   9篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   8篇
  1998年   16篇
  1997年   16篇
  1996年   10篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1968年   1篇
排序方式: 共有801条查询结果,搜索用时 15 毫秒
161.
162.
There are many modalities that may be used to enhance heat transfer performance. One of these modes, the embossing of channel walls with dimples and/or protrusions, is a technique which has the advantage of simplicity of fabrication. The assessment of the quality of a geometry-based heat transfer enhancement technique frequently involves the change in pressure drop that accompanies the geometric modification. This realization provides the motivation for the investigation reported here. The focus of this work is the identification of the existence of various sub-regimes within the laminar-flow regime. The investigation was implemented by numerical simulation supplemented by a three-dimensional model of periodic fully developed flow. The selected channel-height Reynolds number range extended from 200 to 800. Within this range, three sub-regime laminar flows were identified: friction-dominated flow, inertial-loss-dominated flow, and the transition between these flows. Another focus of the results was the presentation of patterns of fluid flow and their impacts on the variation of the pressure drop with Reynolds number.  相似文献   
163.
ABSTRACT

A fully transient model of the direct-chill casting process is used to predict the macrosegregation development of aluminum alloy 7050. The ingot diameter, casting speed, superheat, secondary cooling, and thickness of pure Al at startup are varied. Predicted radial composition distributions are fit to Weibull probability density functions at each axial location, and the normalized standard deviation describes the macrosegregation level and the time when the process reaches steady state. The sump depth, steady-state height, and macrosegregation level were most affected by changes in casting speed and ingot diameter. The pure Al dilutes the alloy and delays compositional steady state.  相似文献   
164.
Estimation of demand product mix is important for effective production plans. Unlike most research in the literature where the product mix is either given or treated as a decision variable in optimization of the production efficiency, this paper focuses on the product mix itself and how to estimate it from the market demand. With more accurate information on the demand product mix, aggregate production plans for product families can be disaggregated into quality detailed plans for individual product items. In this paper, least-square estimates of demand product-mix proportions are first derived. To take into account the effect of the product life cycle, dynamic weighting schemes are then developed to improve the accuracy of the product-mix estimates. For applications, we concentrate particularly on semiconductor demand where new generations of semiconductor products emerge at the pace of every six months, as manifested by the celebrated Moore's laws. The proposed methodologies will be tested with simulated DRAM demands and actual semiconductor demands of different technology generations.  相似文献   
165.
We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.  相似文献   
166.
Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.  相似文献   
167.
The use of measured volatile organic chemical (VOC) concentrations in indoor air to evaluate vapor intrusion is complicated by (i) indoor sources of the same VOCs and (ii) temporal variability in vapor intrusion. This study evaluated the efficacy of utilizing induced negative and positive building pressure conditions during a vapor intrusion investigation program to provide an improved understanding of the potential for vapor intrusion. Pressure control was achieved in five of six buildings where the investigation program was tested. For these five buildings, the induced pressure differences were sufficient to control the flow of soil gas through the building foundation. A comparison of VOC concentrations in indoor air measured during the negative and positive pressure test conditions was sufficient to determine whether vapor intrusion was the primary source of VOCs in indoor air at these buildings. The study results indicate that sampling under controlled building pressure can help minimize ambiguity caused by both indoor sources of VOCs and temporal variability in vapor intrusion.  相似文献   
168.
In this work, high‐oxygen‐content strong oxidizer perchlorate salts were successfully incorporated into current nanothermite composite formulations. The perchlorates were encapsulated within mild oxidizer particles through a series of thermal decomposition, melting, phase segregation, and recrystallization processes, which occurred within confined aerosol droplets. This approach enables the use of hygroscopic materials by stabilizing them within a matrix. Several samples, including Fe2O3/KClO4, CuO/KClO4 and Fe2O3/NH4ClO4 composite oxidizer particles, have been created. The results show that these composite systems significantly outperform the single metal oxide system in both pressurization rate and peak pressure. The ignition temperatures for these mixtures are significantly lower than those of the metal oxides alone, and time‐resolved mass spectrometry shows that O2 release from the oxidizer also occurs at a lower temperature and with high flux. The results are consistent with O2 release being the controlling factor in determining the ignition temperature. High‐speed imaging clearly shows a much more violent reaction. The results suggest that a strategy of encapsulating a very strong oxidizer, which may not be environmentally compatible, within a more stable weak oxidizer offers the opportunity to both tune reactivity and employ materials that previously could not be considered.  相似文献   
169.
170.
Problems in the subject of frictional heating have been studied extensively, yet their complexity remains a barrier to further understanding. This study simplifies the frictional heating problem by examining the temperature rise due to a heat source of prescribed geometry. A single positive feature on the sliding face of the countersurface causes a local temperature rise. The cylindrical feature has a diameter of 150 µm and aspect ratio of 0.1 and slides under the larger contact area whose contact width is ~600 to ~750 µm. An infrared camera, acquiring at 870 Hz, observed the temperature rise at the contact interface between the feature and the rubber pin. The applied force for all tests was 200 mN, and the sliding velocity was varied from 10 to 200 mm/s. Maximum temperature rises of ~1–17 °C and average temperature rises of ~1–8 °C were measured. Measured values were compared to the Jaeger’s frictional heating models for sliding contacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号