首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   8篇
化学工业   30篇
金属工艺   2篇
机械仪表   5篇
建筑科学   2篇
能源动力   4篇
轻工业   6篇
无线电   8篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   22篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1998年   2篇
排序方式: 共有93条查询结果,搜索用时 140 毫秒
91.
Titanium dioxide (TiO2) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH3CHO) on Mn-TiO2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (~ 400 Pa) and synthetic air mixtures (~ 1.01 × 105 Pa total pressure) on un-doped TiO2 and doped with various levels of Mn (0.1-33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH3CHO under the above light sources, and the physical adsorption of CH3CHO on Mn-TiO2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH3CHO on un-doped TiO2 and Mn-TiO2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO2) was identified as the main photocatalysis product. It was found that 0.1% Mn-TiO2 samples resulted in the highest photocatalytic loss of CH3CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1-33%). The CO2 yields were the highest for 0.1% Mn-TiO2 samples under UV irradiation, in agreement with the observed highest CH3CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO2 with Mn results in a significant increase of their photocatalytic activity in the visible range, compared to un-doped TiO2. This elevated activity is lost at high doping levels (1-33%). Finally, the photocatalytic degradation mechanism of CH3CHO on 0.1% Mn-TiO2 surfaces under visible irradiation leading to low CO2 yields is different than that under UV irradiation resulting to high CO2 yields.  相似文献   
92.
Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N2, Ar/N2 + C2H2, and Ar/C2H2 gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found.  相似文献   
93.
Novel glass processing by powder-fed directed energy deposition was explored as a method of adding glass décor to glass surfaces and bottles. Consistent, semitransparent, single-line tracks of soda lime silica glass could be processed onto glass substrates of the same composition, without significant cracks forming in the substrate. A suitable processing window was found with laser power and scan speed showing independent effects on processing. Consideration of processing surface conditions and reduction of laser transmission through transparent substrates was necessary, and the use of an adhesive tape layer aided adhesion of glass feedstock to substrate surfaces. The work demonstrates the potential for a one-step method of glass bottle decoration for the packaging industry, with scope to create 3D designs of high geometric complexity and customizability on glass substrates, thereby adding value to glass packaging by brand differentiation without the high costs associated with molds and tooling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号