首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59887篇
  免费   15341篇
  国内免费   63篇
电工技术   1068篇
综合类   31篇
化学工业   22103篇
金属工艺   1362篇
机械仪表   2229篇
建筑科学   2077篇
矿业工程   6篇
能源动力   1774篇
轻工业   8896篇
水利工程   374篇
石油天然气   60篇
无线电   10143篇
一般工业技术   15828篇
冶金工业   2184篇
原子能技术   367篇
自动化技术   6789篇
  2024年   11篇
  2023年   299篇
  2022年   341篇
  2021年   978篇
  2020年   1899篇
  2019年   3549篇
  2018年   3707篇
  2017年   3956篇
  2016年   4493篇
  2015年   4393篇
  2014年   4724篇
  2013年   6358篇
  2012年   4241篇
  2011年   4276篇
  2010年   3983篇
  2009年   3891篇
  2008年   3320篇
  2007年   2869篇
  2006年   2525篇
  2005年   2099篇
  2004年   2013篇
  2003年   1928篇
  2002年   1865篇
  2001年   1639篇
  2000年   1520篇
  1999年   917篇
  1998年   804篇
  1997年   496篇
  1996年   442篇
  1995年   294篇
  1994年   206篇
  1993年   182篇
  1992年   134篇
  1991年   120篇
  1990年   96篇
  1989年   103篇
  1988年   92篇
  1987年   78篇
  1986年   68篇
  1985年   55篇
  1984年   44篇
  1983年   37篇
  1982年   32篇
  1981年   28篇
  1980年   36篇
  1979年   14篇
  1977年   25篇
  1976年   36篇
  1975年   20篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A nanosized silica particle was used as the support to prepare an Et[Ind]2ZrCl2/MAO catalyst for propylene polymerization of polypropylene. The catalyst and the polymer produced were characterized with nitrogen adsorption, ICP, DSC, SEM, TEM, XRD, solution viscometer, 13C NMR and optical microscopy. The effects of polymerization temperature and [Al]/[Zr] ratio on catalyst activity and polymer melting point were investigated. Under identical reaction conditions, nanosized catalyst exhibited better polymerization activity than the microsized catalyst (e.g., the former had 64% higher activity than the latter at the optimum polymerization temperature (50°C) and [Al]/[Zr] = 570). DSC results indicated that polymer melting point increased with the increase of [Al]/[Zr] ratio and with the decrease of polymerization temperature. XRD results showed that the percentage of γ crystals increased with decreasing [Al]/[Zr] ratio. Electron microscopic results showed that the polymer particle size increased with increasing polymerization temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2573–2580, 2006  相似文献   
992.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   
993.
Hotmelt pressure sensitive adhesives (PSAs) usually contain styrenic block copolymers like styrene–isoprene–styrene (SIS), SBS, SEBS, tackifier, oil, and additives. These block copolymers individually reveal no tack. Therefore, a tackifier is a low molecular weight material with high glass transition temperature (Tg), and imparts the tacky property to PSA. The SIS block copolymer with different diblocks was blended with hydrogenated dicyclopentadiene (H‐DCPD tackifier), which has three kinds of Tg. PSA performance was evaluated by probe tack, peel strength, and shear adhesion failure temperature. PSA is a viscoelastic material, so that its performance is significantly related to the viscoelastic properties of PSAs. We tested the viscoelastic properties by dynamic mechanical analysis and the thermal properties by differential scanning calorimeter to investigate the relation between viscoelastic properties and PSA performance. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2839–2846, 2006  相似文献   
994.
The promoting effect of ultrasonic wave on the hydrodynamics and mass transfer characteristics of the loop airlift reactor was studied. The gas holdup, liquid circulation velocity, mixing time and overall volumetric mass transfer coefficient were examined and compared, with and without ultrasonic wave in the reactor. The experimental results show that ultrasound has almost no notable effect on the gas holdup, but has a tendency to decrease gradually the liquid circulation velocity and increase the overall volumetric mass transfer coefficient; and the effect on the mixing time is relatively complex. At low superficial gas velocity, the low powered ultrasound promotes the radial mixing of fluid; with the ultrasonic power increasing, ultrasonic vibration obstructs the axial mixing of fluid. Moreover, the effect of ultrasonic wave on the mixing time gradually decreases with the increase in the superficial gas velocity. Therefore there exists an optimal ultrasonic power for hydrodynamics and mass transfer. Correlations were also proposed for the hydrodynamics and mass transfer characteristics of the reactor.  相似文献   
995.
4,4′‐bis(Phenoxy)diphenyl sulfone (DPODPS) was synthesized by reaction of phenol with bis(4‐chlorophenyl) sulfone in tetramethylene sulfone in the presence of NaOH. Two poly(aryl ether sulfone ether ketone ketone)s (PESKKs) with high molecular weight were prepared by low temperature solution polycondensation of DPODPS and terephthaloyl chloride (TPC) or isophthaloyl chloride (IPC), respectively, in 1,2‐dichloroethane and in the presence of aluminum chloride (AlCl3) and N‐methylpyrrolidone (NMP). The resulting polymers were characterized by various analytical techniques, such as FT‐IR, 1H‐NMR, DSC, TG, and WAXD. The results show that the Tg and Td of PESEKKs are much higher, but its Tm is lower than those of PEKK. The other results indicate that PESEKKs exhibit excellent thermostabilities at 300 ± 10°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 489–493, 2005  相似文献   
996.
Deformation and fracture toughness of high‐density polyethylene (HDPE) in plane‐stress tension was studied using the concept of essential work of fracture (EWF). Strain range for necking was determined from uniaxial tensile test, and was used to explain the deformation transition for 2‐staged crack growth in double‐edge‐notched tensile test. Through work‐partitioning, EWF values for HDPE were determined for each stage of the crack growth. Appropriateness of these EWF values to represent the material toughness is discussed. The study concludes that the EWF values for ductile polymers like HDPE may not be constant, but vary with the deformation behaviour involved in the crack growth process. POLYM. ENG. SCI., 47:1327–1337, 2007. © 2007 Society of Plastics Engineers  相似文献   
997.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   
998.
Biodegradable polymers and the hydrogels have been increasingly applied in a variety of biomedical fields and pharmaceutics. α,β‐Poly(N‐2‐hydroxyethyl‐DL ‐aspartamide), PHEA, one of poly(amino acid)s with hydroxyethyl pendants, are known to be biodegradable and biocompatible, and has been studied as an useful biomaterial, especially for drug delivery, via appropriate structural modification. In this work, hydrogels based on PHEA were prepared by two‐step reaction, that is, the crosslinking of polysuccinimide, the precursor polymer, with oligomeric PEG or PEI‐diamines and the following nucleophilic ring‐opening reaction by ethanolamine. Soft hydrogels possessing varying degrees of gel strength could be prepared easily, depending on the amount of different crosslinking reagents. The swelling degrees, which were in the range of 10–40 g–water/dry gel, increased somewhat at higher temperature, and also at alkaline pH of aqueous solution. A typical hydrogel remained almost unchanged for 1 week, at 37°C in phosphate buffer of pH 7.4, and then seemed to degrade slowly as time. A porous scaffold could be fabricated by the freeze drying of water‐swollen gel. The PHEA‐based hydrogels have potential for useful biomaterial applications including current drug delivery system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3741–3746, 2003  相似文献   
999.
The deformation of the dispersed phase in polystyrene/high density polyethylene (PS/HDPE) blends produced by ribbon extrusion was studied numerically and experimentally. A mathematical model for the deformation of the dispersed phase in ribbon extrusion processing of polymer blends was developed assuming uniaxial deformation of the ribbon and the equilibrium shapes of the dispersed particles with a pressure balance over a drop. Simulated morphologies as function of the post‐extrusion parameters were obtained and compared with experiments. The analysis of the ribbon extrusion process showed that parameters such as draw ratio (DR) and ribbon‐water contact length (X) significantly influence the ribbon dimensions, the extensional stress, and the stretching force. The results also showed that deformation and coalescence of the dispersed phase in the ribbon extrusion processing of polymer blends increase at higher DR and/or lower X values. The comparison between the model and the experimental morphologies of PS/HDPE produced a good agreement.  相似文献   
1000.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号