首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9717篇
  免费   1087篇
  国内免费   21篇
电工技术   123篇
综合类   17篇
化学工业   2507篇
金属工艺   353篇
机械仪表   685篇
建筑科学   162篇
矿业工程   3篇
能源动力   430篇
轻工业   1051篇
水利工程   21篇
石油天然气   1篇
无线电   1863篇
一般工业技术   2277篇
冶金工业   263篇
原子能技术   173篇
自动化技术   896篇
  2024年   14篇
  2023年   160篇
  2022年   210篇
  2021年   373篇
  2020年   307篇
  2019年   307篇
  2018年   406篇
  2017年   403篇
  2016年   505篇
  2015年   419篇
  2014年   562篇
  2013年   718篇
  2012年   753篇
  2011年   871篇
  2010年   626篇
  2009年   638篇
  2008年   543篇
  2007年   376篇
  2006年   380篇
  2005年   297篇
  2004年   293篇
  2003年   264篇
  2002年   252篇
  2001年   163篇
  2000年   173篇
  1999年   147篇
  1998年   145篇
  1997年   102篇
  1996年   91篇
  1995年   74篇
  1994年   41篇
  1993年   25篇
  1992年   32篇
  1991年   18篇
  1990年   27篇
  1989年   23篇
  1988年   19篇
  1987年   15篇
  1986年   9篇
  1985年   15篇
  1984年   6篇
  1983年   5篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Acoustic noise generated by a multi-layer ceramic capacitor (MLCC) makes users uncomfortable, so the problem must be analyzed to reduce the noise. There is a correlation between the acoustic noise and the vibration of MLCCs and the circuit board. Therefore, the acoustic noise problem must be investigated from a vibration perspective. In this study, the acoustic noise-generating mechanism was investigated, and the relationship between the characteristics of the noise and the dynamic characteristics of the circuit board with MLCC was analyzed. And a correlation criterion was proposed to predict the acoustic noise using the vibration response of the circuit board.  相似文献   
92.
We develop a miniaturized batch-type screw mixer (BSM) for uniform mixing of polymer resin and nanoparticles, based on the stretching of material elements. This stretching is induced by the combination of recirculating cross-sectional flows in deep channels of the screw and high shear stress developed at flight regions. The BSM is used to produce a polymer nano-composite composed of multi-walled carbon nanotubes and polydimethylsiloxane resin. The mixing performance of the BSM is characterized quantitatively by estimating two different types of mixing efficiencies (i.e., dispersive mixing and distributive mixing) via transmitted light microscope images. The developed BSM highly improves the mixing performance rather than that of a conventional ultrasonic mixing device.  相似文献   
93.
Methanol selective oxidation to formaldehyde over a modified Fe-Mo catalyst with two different stoichiometric (Mo/Fe atomic ratio = 1.5 and 3.0) was studied experimentally in a fixed bed reactor over a wide range of reaction conditions. The physicochemical characterization of the prepared catalysts provides evidence that Fe2(MoO4)3 is in fact the active phase of the catalyst. The experimental results of conversion of methanol and selectivity towards formaldehyde for various residence times were studied. The results showed that as the residence time increases the yield of formaldehyde decreases. Selectivity of formaldehyde decreases with increase in residence time. This result is attributable to subsequent oxidation of formaldehyde to carbon monoxide due to longer residence time.  相似文献   
94.
Temperature‐responsive interpenetrating polymer network (IPN) hydrogels constructed with poly(vinyl alcohol) and poly(diallyldimethylammonium chloride) using the sequential IPN method were studied. The characteristics of IPN hydrogels were investigated using the dynamic vapor sorption system. IPN hydrogels exhibited a relatively high sorption ratio, 180–360% at room temperature. The sorption ratio of hydrogels depended on temperature. Diffusion coefficients were calculated according to the Fickian Law at several temperatures. The apparent activation energy was 5.43 kJ mol?1, which corresponds to typical diffusion processes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1389–1392, 2003  相似文献   
95.
An interpenetrating polymer network (IPN) hydrogel composed of chitosan and polyallylamine exhibited electric‐sensitive behavior. The chitosan/polyallylamine IPN hydrogel was synthesized by radical polymerization using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The swelling behavior of the IPN was studied by immersion of the gel samples in aqueous NaCl solutions at various concentrations and pHs. The swelling ratio decreased with increasing concentration and pH of electrolyte solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen the IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of the IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2290–2295, 2002  相似文献   
96.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   
97.
Sweet potato pulp (SSP) obtained as a by‐product from starch extraction was blended with polycaprolactone (PCL) to prepare a biodegradable plastic material. In the blends, PCL was used as a reinforcing agent. The SPP/PCL blends were prepared by compression‐molding under high temperature and pressure, at different SPP/PCL ratios, and the mechanical properties of the molded specimens were tested. Matrix structure and thermal properties were measured by using a Fourier transform infrared (FTIR) spectrophotometer, scanning electron microscope (SEM), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). Mechanical properties (tensile and flexural properties) were also measured to find the most suitable ratio in a SSP/PCL blend. During compression molding of the SPP/PCL blends under high pressure and temperature, chemical reaction occurred between SPP and PCL, and thus, thermal stability and mechanical strength of the blends increased and water uptake decreased. Also, by increasing the PCL content in the blend, the matrix in the blend became more homogeneous, and consequently, mechanical strength of the molded specimen increased. At 7/3 or 6/4 weight ratio of SSP/PCL, water uptake of the molded specimen became substantially less than that at 8/2. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 861–866, 2004  相似文献   
98.
The High-Performance Computing (HPC) is an infrastructure to support various research fields. The research using HPC requires big storage for large-scale of raw data and the huge computing resources to analyze. The consolidated operations of the computing center for supporting various researches using HPC are a very effective organization. The consolidated operations are able to increase the utilization. The computing center has to be re-organized continuously in order to support the various fields of research effectively and flexibly. Re-organization to reuse the limited resources enforces the update of the information for verification of the computing resources after the re-allocation of computing resources and the re-distribution of trusted connection between computing resources. Consequently, to maintain effective research support we need automated resource re-organization environment. In this paper, we build an automated update of the trusted connection for re-organized computing resource using puppet which is automated system management platform. Finally, we provide a unified verification point and efficient environment for the re-allocation and re-organization of the integrated computing center.  相似文献   
99.
β-SiC powder containing 6 wt% A12O3 and 4 wt% Y2O3 as sintering additives was pressureless sintered at 2000°C for 1 h (AYE-SiC) and 3 h (AYP-SiC). AYE-SiC consisted of an equiaxed grain structure and AYP-SiC exhibited a micro-structure with platelike grains as a result of grain growth related to β→α phase transformation during sintering, R -curve behavior and flaw tolerance for these silicon carbides were evaluated by the indentation-strength technique. For comparison, the R -curve behavior of conventional sintered, boron- and carbon-doped SiC (SS-SiC) was evaluated. AYE-SiC and AYP-SiC exhibited rising R -curve behavior with toughening exponents of m = 0.042 and m = 0.135, respectively. AYP-SiC exhibited better flaw tolerance and more sharply rising R -curve behavior than AYE-SiC. The more sharply rising R -curve behavior and the better flaw tolerance of AYP-SiC were attributed mainly to grain bridging of crack faces by platelike grains. Because of the high degree of transgranular fracture, SS-SiC exhibited a flat R -curve despite a microstructural feature with platelike grains.  相似文献   
100.
Poly(trimethylene terephthalate) (PTT) nano composites were synthesized by in situ polymerization at high temperature with two thermally stable organoclays: 1,2‐dimethylhexadecylimidazolium‐montmorillonite (IMD‐MMT) and dodecyltriphenyl phosphonium‐MMT (C12PPh‐MMT). PTT hybrid fibers with various organoclay contents were melt‐spun at various draw ratios (DRs) to produce monofilaments. The thermomechanical properties and morphologies of the PTT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, electron microscopy, and mechanical tensile properties analysis. The nanostructure of the hybrid fibers was observed by both scanning and transmission electron microscopy, which showed that the clay layers were well dispersed into the matrix polymer, although some clusters or agglomerated particles were also detected. Unlike the hybrids containing IMD‐MMT, the clay layers of the C12PPh‐MMT hybrid fiber were more dispersed into the matrix polymer. The thermal stability and tensile properties of the hybrid fibers increased with increasing clay content for DR = 1. However, as DR increased from 1 to 9 the ultimate strength and initial modulus of the hybrid fibers with IMD‐MMT increased slightly whereas those of C12PPh‐MMT hybrid fibers decreased slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4535–4545, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号