首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549589篇
  免费   33406篇
  国内免费   10324篇
电工技术   39031篇
技术理论   11篇
综合类   11663篇
化学工业   281507篇
金属工艺   67956篇
机械仪表   46642篇
建筑科学   51354篇
矿业工程   14133篇
能源动力   52307篇
轻工业   116775篇
水利工程   15879篇
石油天然气   43071篇
武器工业   826篇
无线电   203165篇
一般工业技术   287797篇
冶金工业   149565篇
原子能技术   34613篇
自动化技术   177024篇
  2021年   18648篇
  2020年   14058篇
  2019年   16524篇
  2018年   17351篇
  2017年   16869篇
  2016年   23051篇
  2015年   20303篇
  2014年   32357篇
  2013年   92199篇
  2012年   39891篇
  2011年   52481篇
  2010年   46865篇
  2009年   54955篇
  2008年   48531篇
  2007年   45674篇
  2006年   48810篇
  2005年   42675篇
  2004年   43201篇
  2003年   42839篇
  2002年   41942篇
  2001年   38292篇
  2000年   37124篇
  1999年   35904篇
  1998年   40695篇
  1997年   37094篇
  1996年   34325篇
  1995年   30424篇
  1994年   28584篇
  1993年   28174篇
  1992年   26452篇
  1991年   23317篇
  1990年   23587篇
  1989年   22602篇
  1988年   21110篇
  1987年   19310篇
  1986年   18620篇
  1985年   21938篇
  1984年   22300篇
  1983年   20210篇
  1982年   19213篇
  1981年   19296篇
  1980年   17856篇
  1979年   18486篇
  1978年   17697篇
  1977年   17119篇
  1976年   17745篇
  1975年   15957篇
  1974年   15509篇
  1973年   15553篇
  1972年   13044篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
62.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
63.
Water contamination is a global challenge impacting both the environment and human health with significant economic and social costs. The growing scarcity of usable water resources requires effective treatment of wastewater. In this context, developing cheaper, safer and more efficient wastewater treatment technologies are the need of the hour. One promising approach that several studies have reported success has been the usage of nanomaterials in water and waste water management. The rapid progress of research in nanomaterial sciences has shown their growing potential; however, there has not been a great amount of information available on their implementation. This review focuses on developments in nanotechnology that hold strong potential for wastewater treatment. The review covers key techniques in nanomaterial‐based water treatments including adsorption, filtration and photocatalysis with recent examples showing how to improve their properties and efficiencies according to the need.  相似文献   
64.
Russian Journal of Nondestructive Testing - The results of amplitude analysis of discrete acoustic emission signals from developing sources such as fatigue cracks are presented. The studies were...  相似文献   
65.
Russian Engineering Research - Digital tools for managing improvements in automobile production are developed. An operative tool provides warnings regarding the operational quality of the vehicles...  相似文献   
66.
Bulletin of Engineering Geology and the Environment - Bio-cementation is currently applied to solidify sandy soils, but only few studies use it to cement loess soil particles. In this study, the...  相似文献   
67.
Currently, the efficient detection of fingerprints is essential for the crime investigations. Revealing fingerprints is commonly achieved with fluorescent organic compounds but they are not efficient for fingerprint detection on porous or reflective surfaces. In order to solve the problem of collecting fingerprints on porous/reflective surfaces, inorganic phosphors have been employed, since they have characteristics of variable color emission, afterglow, high chemical stability and nano-size, which allow the fingerprint detection on any porous or non-porous surfaces. Due to these last properties, this review presents a summary about the use of phosphorescent and fluorescent phosphors for the detection of latent fingerprints. First, we discussed the main physical and chemical characteristics of the fingerprints which permit their detection and collection from any surface. After this, we presented the main morphological, structural and luminescent properties of the phosphorescent and fluorescent phosphors that allow their use for fingerprint detection. Later, we demonstrated with pictures of fingerprints (with and without light emission from the phosphors deposited on them) that both, phosphorescent and fluorescent phosphors can be used to visualize fingerprints with high resolution and high contrast without interference of the background surface, which is ideal for its collection and registration in the Automated Fingerprint Identification System (AFIS). We believe that this review could be useful to understand how to select an appropriate phosphorescent or fluorescent material for fingerprint detection depending on the type of surface (porous or non-porous, reflective or not reflective) where the fingerprint is deposited.  相似文献   
68.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
69.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   
70.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号