Exhaustive characterizations of antisera to the structurally related peptides pancreatic polypeptide (PP), neuropeptide Y (NPY), and peptide YY (PYY) enabled us to establish the developmental pattern of these peptides in rat and mouse pancreas. PYY was the earliest detectable peptide and was present in all early appearing endocrine cell types. NPY appeared later and occurred exclusively in a subpopulation of insulin cells, whereas PP cells arose latest. At the earliest stage studied, all endocrine cells stored PYY. Most of these cells also contained glucagon. Subsequently, the endocrine cells comprised glucagon+PYY cells and glucagon+PYY+insulin cells. Later, cells storing either only insulin or insulin+PYY appeared. Quantitations of the relative numbers of these cell populations during development were consistent with a precursor role of triple-positive (insulin+glucagon+PYY) cells. Moreover, bromodeoxyuridine (BrdU) injections at E15.5 showed that a large percentage of triple-positive cells were in S-phase and therefore were actively dividing, whereas almost no pure insulin cells or insulin+PYY cells synthesized DNA at this time. These results suggest that PYY-positive endocrine cells may represent precursors for mature islet cells. 相似文献
Comparative experiments are performed in friction stir welding (FSW) of dissimilar Al/Mg alloys with and without assistance of ultrasonic vibration. Metallographic characterization of the welds at transverse cross sections reveals that ultrasonic vibration induces differences in plastic material flow in two conditions. In FSW, the plastic material in the peripheral area of shoulder-affected zone (SAZ) tends to flow downward because of the weakening of the driving force of the shoulder, and a plastic material insulation layer is formed at the SAZ edge. When ultrasonic vibration is exerted, the stirred zone is divided into the inner and outer shear layers, the downward material flow trend of the inner shear layer disappears and tends to flow upward, and the onion-ring structure caused by the swirl motion is avoided in the pin-affected zone. By improving the flow behavior of plastic materials in the stirred zone, ultrasonic vibration reduces the heat generation, accelerates the heat dissipation in nugget zone and changes the thermal cycles, thus inhibiting the formation of intermetallic compound layers.