首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   4篇
综合类   1篇
化学工业   114篇
金属工艺   2篇
机械仪表   3篇
建筑科学   3篇
能源动力   4篇
轻工业   14篇
水利工程   1篇
石油天然气   2篇
无线电   3篇
一般工业技术   46篇
冶金工业   11篇
自动化技术   8篇
  2024年   3篇
  2023年   5篇
  2022年   27篇
  2021年   35篇
  2020年   6篇
  2019年   6篇
  2018年   11篇
  2017年   6篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   8篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1993年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
11.
    
Previously, we showed that a nitric oxide synthase (NOS) inhibitor, compound T1023, induces transient hypoxia and prevents acute radiation syndrome (ARS) in mice. Significant efficacy (according to various tests, dose modifying factor (DMF)—1.6–1.9 against H-ARS/G-ARS) and safety in radioprotective doses (1/5–1/4 LD10) became the reason for testing its ability to prevent complications of tumor radiation therapy (RT). Research methods included studying T1023 effects on skin acute radiation reactions (RSR) in rats and mice without tumors and in tumor-bearing animals. The effects were evaluated using clinical, morphological and histological techniques as well as RTOG classification. T1023 administration prior to irradiation significantly limited the severity of acute RSR. This was due to a decrease in radiation alteration of the skin and underlying tissues, and the preservation of the functional activity of cell populations that are critical in the pathogenesis of radiation burn. The DMF values for T1023 for skin protection were 1.4–1.7. Moreover, its radioprotective effect was fully selective to normal tissues in RT models of solid tumors—T1023 reduced the severity of acute RSR and did not modify the antitumor effects of γ-radiation. The results indicate that T1023 can selectively protect the non-malignant tissues against γ-radiation due to hypoxic mechanism of action and potentiate opportunities of NOS inhibitors in RT complications prevention.  相似文献   
12.
A novel approach to synthesize carbon nanofibers (CNFs) directly on the surface of metal μm-sized particles to evenly disperse the carbon nanomaterials in a composite material was proposed. As a metal matrix, 5–10 μm copper particles were utilized. As a carbon source, C2H2, CH4 and CO were examined. The best conditions were found to be in C2H2 (30 cm3/min) and H2 (260 cm3/min) atmosphere at the temperature of 750 °C. The composites based on copper and CNFs prepared by vacuum hot pressing showed the increase in hardness from 35 to 60 kg/mm2 almost retaining pure copper electrical properties.  相似文献   
13.
How the structure of electrically conducting ceramic composites in the SiC B4C system is formed has been studied. The mechanical and electrophysical properties have been investigated as a function of the ratio of the components and the sintering conditions.  相似文献   
14.
The influence which the composition of powder mixtures, the treatment conditions which the mixtures are subjected to, and the conditions under which the hot-pressed composite materials B4C – (5-10 mass%) calcium-silicon are fabricated exert on the structure, nature of failure, and mechanical properties of these materials is investigated. Optimum properties are possessed by material containing 10 mass% of addition. It is shown that the structure, morphology, and dispersivity, as well as the nature of the distribution of the components that are added to the composite material (secondary phase) vary as the temperature of hot pressing changes. Maximal mechanical characteristics of the composite material (σbend = 560 MPa, K 1c = 4.7 MPa·m1/2, HV = 37 GPa) are attained at hot-pressing temperatures in the range 2000-2100°C.  相似文献   
15.
16.
An ontology of scientific experiments   总被引:1,自引:0,他引:1  
  相似文献   
17.
18.
19.
    
Mollusks are unique animals with a relatively simple central nervous system (CNS) containing giant neurons with identified functions. With such simple CNS, mollusks yet display sufficiently complex behavior, thus ideal for various studies of behavioral processes, including long-term memory (LTM) formation. For our research, we use the formation of the fear avoidance reflex in the terrestrial mollusk Helix lucorum as a learning model. We have shown previously that LTM formation in Helix requires epigenetic modifications of histones leading to both activation and inactivation of the specific genes. It is known that microRNAs (miRNAs) negatively regulate the expression of genes; however, the role of miRNAs in behavioral regulation has been poorly investigated. Currently, there is no miRNAs sequencing data being published on Helix lucorum, which makes it impossible to investigate the role of miRNAs in the memory formation of this mollusk. In this study, we have performed sequencing and comparative bioinformatics analysis of the miRNAs from the CNS of Helix lucorum. We have identified 95 different microRNAs, including microRNAs belonging to the MIR-9, MIR-10, MIR-22, MIR-124, MIR-137, and MIR-153 families, known to be involved in various CNS processes of vertebrates and other species, particularly, in the fear behavior and LTM. We have shown that in the CNS of Helix lucorum MIR-10 family (26 miRNAs) is the most representative one, including Hlu-Mir-10-S5-5p and Hlu-Mir-10-S9-5p as top hits. Moreover, we have shown the involvement of the MIR-10 family in LTM formation in Helix. The expression of 17 representatives of MIR-10 differentially changes during different periods of LTM consolidation in the CNS of Helix. In addition, using comparative analysis of microRNA expression upon learning in normal snails and snails with deficient learning abilities with dysfunction of the serotonergic system, we identified a number of microRNAs from several families, including MIR-10, which expression changes only in normal animals. The obtained data can be used for further fundamental and applied behavioral research.  相似文献   
20.
    
The sintering behavior of tetragonal zirconia nanopowders modified by the group IV elements at the initial sintering stage was investigated. It was found that different additives SiO2, SnO2, and GeO2 have a significant influence on the densification kinetics of 3Y-TZP nanopowders obtained by coprecipitation during sintering as it depends on the amount of additives (0-5 wt%). The shrinkage of zirconia-based specimens during the nonisothermal sintering was analyzed using the dilatometric data. The constant rate of heating technique was applied in order to determine the dominant mass transfer mechanism at the initial stage of sintering in modified zirconia nanopowders. It was found that there was a change in the mass transfer mechanism and diffusion activation energy in 3Y-TZP as a result of the additives. The dominant sintering mechanism in 3Y-TZP changed from the volume diffusion to the grain boundary diffusion due to the addition of SiO2 and SnO2 and the sintering activation energy increased in these cases. However, GeO2 additive activated the viscous flow mechanism in sintering process of 3Y-TZP nanopowders which led to acceleration of the densification due to the decrease in the diffusion activation energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号