首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   24篇
电工技术   1篇
综合类   1篇
化学工业   117篇
机械仪表   9篇
建筑科学   13篇
能源动力   5篇
轻工业   64篇
水利工程   1篇
石油天然气   1篇
无线电   11篇
一般工业技术   72篇
冶金工业   33篇
自动化技术   17篇
  2024年   1篇
  2023年   9篇
  2022年   17篇
  2021年   35篇
  2020年   21篇
  2019年   20篇
  2018年   13篇
  2017年   17篇
  2016年   9篇
  2015年   12篇
  2014年   9篇
  2013年   16篇
  2012年   18篇
  2011年   31篇
  2010年   14篇
  2009年   13篇
  2008年   15篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1976年   2篇
排序方式: 共有345条查询结果,搜索用时 20 毫秒
51.
Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.  相似文献   
52.
53.
This article deals with the study of the vitrification mechanism as an inertization method for coal ashes contaminated with heavy metals. Ashes from coal (thermoelectric) and wastes from mining of fluorite and feldspar and from plating were used to compose vitreous systems using a mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450°C for 2 h using 10% (mass) of Na2CO3 (as a fluxing agent). The glasses were poured into a mold and annealed (600°C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20°C/min) and the mechanical behavior by HV. As a result, the softening temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects on the glass transition (Tg) and softening (Ts) temperatures. The hardness by micro-indentation of all glasses is mainly affected by the plating (galvanic) residue due to the high iron and zinc content of this waste.  相似文献   
54.
The work is motivated by experimental studies on energy dissipation due to micro-slip in mechanical joints. It has been observed that the loss of energy undergoes certain evolution under cyclic shear loading. It manifests itself in the form of the gradual decrease approaching a steady state as cycling progresses. This behavior has a repeatable character if contact is re-established and subjected to cycling again. In the present work, a simple multiple-asperity model is developed that suggests a physical hypothesis that when two rough surfaces are brought in contact and subjected to shear loads a certain locking mechanism comes into play at the interface. Such locking occurs due to the tendency of the interface to adapt its contact microstructure to the loading conditions. The adaptation mechanism is described in the present work through the contact inclination angles. The developed model is simple in application and it relates micro-characteristics of the contact to macro-behavior of the system exhibiting itself in energy dissipation.  相似文献   
55.
The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P < 0.05). The pH analysis at 7 days showed significant differences (P < 0.05) among the groups. No differences among the pastes were found in the calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm‐infected dentin in comparison to the other pastes (P < 0.05). Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. Microsc. Res. Tech. 78:620–625, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
56.
The present study evaluated whether the changes in the labeling pattern of cytoskeletal proteins in osteogenic cells cultured on bioactive glass‐based materials are due to altered mRNA and protein levels. Primary rat‐derived osteogenic cells were plated on Bioglass® 45S5, Biosilicate®, and borosilicate (bioinert control). The following parameters were assayed: (i) qualitative epifluorescence analysis of actin and tubulin; (ii) quantitative mRNA and protein expression for actin and tubulin by real‐time PCR and ELISA, respectively, and (iii) qualitative analysis of cell morphology by scanning electron microscopy (SEM). At days 3 and 7, the cells grown on borosilicate showed typical actin and tubulin labeling patterns, whereas those on the bioactive materials showed roundish areas devoid of fluorescence signals. The cultures grown on bioactive materials showed significant changes in actin and tubulin mRNA expression that were not reflected in the corresponding protein levels. A positive correlation between the mRNA and protein as well as an association between epifluorescence imaging and quantitative data were only detected for the borosilicate. SEM imaging of the cultures on the bioactive surfaces revealed cells partly or totally coated with material aggregates, whose characteristics resembled the substrate topography. The culturing of osteogenic cells on Bioglass® 45S5 and Biosilicate® affect actin and tubulin mRNA expression but not the corresponding protein levels. Changes in the labeling pattern of these proteins should then be attributed, at least in part, to the presence of a physical barrier on the cell surface as a result of the material surface reactions, thus limiting fluorescence signals. Microsc. Res. Tech. 78:1046–1053, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
57.
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.  相似文献   
58.
Mechanical metamaterials inspired by the Japanese art of paper folding have gained considerable attention because of their potential to yield deployable and highly tunable assemblies. The inherent foldability of origami structures enlarges the material design space with remarkable properties such as auxeticity and high deformation recoverability and deployability, the latter being key in applications where spatial constraints are pivotal. This work integrates the results of the design, 3D direct laser writing fabrication, and in situ scanning electron microscopic mechanical characterization of microscale origami metamaterials, based on the multimodal assembly of Miura‐Ori tubes. The origami‐architected metamaterials, achieved by means of microfabrication, display remarkable mechanical properties: stiffness and Poisson’s ratio tunable anisotropy, large degree of shape recoverability, multistability, and even reversible auxeticity whereby the metamaterial switches Poisson’s ratio sign during deformation. The findings here reported underscore the scalable and multifunctional nature of origami designs, and pave the way toward harnessing the power of origami engineering at small scales.  相似文献   
59.
Growth of carbon nanotubes (CNT) or carbon nano-fibres (CNF) on carbon fibrous substrates is a way to increase the fracture toughness of fibre reinforced composites (FRC), with encouraging results reported in the recent years. If these nano-engineered FRC (nFRC) are destined to leave laboratories and enter industrial-scale production, a question of adapting the existing composite manufacturing methods will arise. The paper studies compressibility of woven carbon fibre performs (two types of fabrics) with CNT/CNF grown on the fibres using the CVD method. The results include pressure vs thickness and pressure vs fibre volume fraction diagrams for one and four layers of the fabric. Morphology of the nFRC is studied with SEM. It is shown that the pressure needed to achieve the target fibre volume fraction of the preform increases drastically (for example, from 0.05 MPa to more than 0.5 MPa for a fibre volume fraction of 52%) when CNT/CNF are grown on it. No change in nesting of the fabric plies is noticed. The poor compressibility can lower the achievable fibre volume fraction in composite for economical vacuum assisted light-RTM techniques and increase the pressure requirements in autoclave processing.  相似文献   
60.
Photo-thermo-refractive (PTR) glass demonstrates refractive index change after exposure to UV radiation followed by a thermal treatment that enables recording of high efficiency holographic optical elements. This work demonstrates feasibility of function of this material as a complex optical medium which posseses both photosensitive and luminescent properties and paves a way for creation of monolythic solid state lasers where resonator components can be holographically recorded inside of a laser medium. It was found, that incorporating of Nd3+ ions in PTR glass does not affect photosensitivity required for hologram recording. It was demonstrated that emission wavelength, spectral width, and cross section of Nd3+ luminescence in PTR glass are typical for silicate laser glasses and Nd-doped PTR glass can be considered as a promising laser medium for monolithic solid state lasers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号