首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   14篇
电工技术   5篇
综合类   1篇
化学工业   90篇
金属工艺   6篇
机械仪表   4篇
建筑科学   5篇
矿业工程   1篇
能源动力   5篇
轻工业   17篇
水利工程   1篇
石油天然气   1篇
无线电   20篇
一般工业技术   54篇
冶金工业   28篇
原子能技术   3篇
自动化技术   43篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   7篇
  2018年   9篇
  2017年   11篇
  2016年   8篇
  2015年   2篇
  2014年   12篇
  2013年   17篇
  2012年   14篇
  2011年   15篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
41.
While severe plastic deformation (SPD) on bulk samples has been widely applied for modifying the H-sorption properties, there has been little attention towards the use of SPD on powder materials. In this context, the aim of the present work was to compare the H-storage properties of high-pressure torsion (HPT) consolidated products obtained from two distinct Mg powder precursors: atomized micro-sized and condensed ultrafine powder particles. The results showed that the nature of the initial powder precursor had a pronounced effect on the H-sorption behavior. The HPT product obtained from the condensed ultrafine powder showed faster absorption kinetics than the consolidated product obtained from the atomized powder. However, the HPT product obtained from atomized powder could absorb more hydrogen and showed faster desorption kinetics corresponding to a lower activation energy. These results are discussed by taking into account the effectiveness of the HPT process to refine the grain sizes and differences in the dispersion of fine MgO oxide particles.  相似文献   
42.
The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the Fully Utilized Design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the Modified Fully Utilized Design (MFUD) method, has been tested successfully on a number of problems that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favourably with the optimum results that can be generated by using non-linear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favour traditional design methods rather than methods based on advanced calculus and non-linear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are examined along with a number of illustrative examples. © 1998 This paper was produced under the auspices of the U.S. Government and it is therefore not subject to copyright in the U.S.  相似文献   
43.

One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. “True” 1D nanostructures through “Medusa”-like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine.

  相似文献   
44.
During unitized shipment, the components of unit loads are interacting with each other. During floor stacking of unit loads, the load on the top of the pallet causes the top deck of the pallet to bend, which creates an uneven top deck surface resulting in uneven or asymmetrical support of the corrugated boxes. This asymmetrical support could significantly affect the strength of the corrugated boxes, and it depends on the top deck stiffness of the pallet. This study is aimed at investigating how the variations of pallet top deck stiffness and the resulting asymmetric support affect corrugated box compression strength. The study used a scaled-down unit load compression test on quarter-scale pallet designs with different deckboard thicknesses using four different corrugated box designs. Pallet top deck stiffness was determined to have a significant effect on box compression strength. There was a 27%–37% increase in box compression strength for boxes supported by high-stiffness pallets in comparison with low-stiffness pallets. The fact that boxes were weaker on low-stiffness pallets could be explained by the uneven pressure distribution between the pallet deck and bottom layer of boxes. Pressure data showed that a higher percentage of total pressure was located under the box sidewalls that were supported on the outside stringers of low-stiffness pallets in comparison with high-stiffness pallets. This was disproportionately loading one side of the box. Utilizing the effects of pallet top deck stiffness on box compression performance, a unit load cost analysis is presented showing that a stiffer pallet can be used to carry boxes with less board material; hence, it can reduce the total unit load packaging cost.  相似文献   
45.
For corn drying one of the most popular possibilities in Europe is to use a mixed flow dryer. Large differences in the vertical grain particle velocity in this type of dryers are causing differences in the residence time. Hence, uneven drying occurs causing under-drying or over-drying of grain portions. To investigate the influences of the dryer walls and the air ducts on the particle velocity distribution experiments have been carried out in industrial and laboratory sized dryers and the measurements were compared with discrete element models. The particle flow velocity distribution between the air ducts is modelled analytically based on arching hypothesis. Using discrete element models the effects of different possible constructional modifications causing more even vertical grain particle velocity distribution were analyzed.  相似文献   
46.
Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the current day single crystal Ni-based superalloys. The Co-Re-based alloys have been designed to have very high melting range, and they are meant for application at +373 K (+100 °C) above Ni-superalloys. They are significantly different from the conventional Co-based alloys that are used in static components of today??s gas turbines, and the Co-Re alloys have never been used for structural applications before. The Co-Re-Cr system has complex microstructure with many different phases present. Phase transformations and stabilities of fine strengthening precipitates at high temperatures remain mostly unexplored in the Co-Re alloys, and to develop basic understanding, model ternary and quaternary compositions were studied within the alloy development program. In situ neutron and synchrotron measurements at high temperatures were extensively used for this purpose, and some recent results from the in situ measurements are presented. In particular, the effect of boron doping in Co-Re alloys and the stabilities of the fine TaC precipitates at high temperatures were investigated. A fine dispersion of TaC precipitates strengthens some Co-Re alloys, and their stabilities at the application temperatures are critical. In the beginning, the alloy development strategy is very briefly discussed.  相似文献   
47.
Densification and structural change of mechanically alloyed W-Cu composites   总被引:4,自引:0,他引:4  
Fine-grained, high-density (97+ pct of theoretical density (TD)), 80W-20Cu wt pct (58W-42Cu at. pct) composites have been prepared using nonconventional alloying techniques. The W and Cu precursor powders were combined by a high-energy ball-milling procedure in air or hexane. The mechanically alloyed W+Cu powder mixtures were then cold pressed into green compacts and sintered at 1523 K. The milling medium and milling time were varied to increase product densities with a concomitant order-of-magnitude decrease in grain size. For densification, air was found to be a more effective medium than hexane. From microhardness measurements, it was concluded that the W-Cu alloys were dispersion and solution hardened, but were sensitive to entrapped residual impurities. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron micros-copy (SEM) analyses were used to demonstrate that the as-milled and sintered W-Cu alloy structures were metastable, decomposing into the starting W and Cu components upon heating at or above 723 K.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号