首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40245篇
  免费   13045篇
  国内免费   2篇
电工技术   739篇
综合类   2篇
化学工业   17200篇
金属工艺   337篇
机械仪表   727篇
建筑科学   1711篇
矿业工程   17篇
能源动力   888篇
轻工业   7286篇
水利工程   294篇
石油天然气   51篇
无线电   6913篇
一般工业技术   11562篇
冶金工业   1012篇
原子能技术   14篇
自动化技术   4539篇
  2024年   2篇
  2023年   17篇
  2022年   45篇
  2021年   239篇
  2020年   1429篇
  2019年   3181篇
  2018年   3117篇
  2017年   3435篇
  2016年   3901篇
  2015年   3965篇
  2014年   3901篇
  2013年   5034篇
  2012年   2746篇
  2011年   2390篇
  2010年   2675篇
  2009年   2565篇
  2008年   2106篇
  2007年   1935篇
  2006年   1709篇
  2005年   1405篇
  2004年   1372篇
  2003年   1354篇
  2002年   1292篇
  2001年   1119篇
  2000年   1091篇
  1999年   492篇
  1998年   189篇
  1997年   148篇
  1996年   82篇
  1995年   60篇
  1994年   41篇
  1993年   52篇
  1992年   26篇
  1991年   22篇
  1990年   18篇
  1989年   20篇
  1988年   10篇
  1987年   13篇
  1986年   17篇
  1985年   17篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1978年   4篇
  1977年   5篇
  1976年   9篇
  1975年   4篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
In this paper, secure multicasting with the help of cooperative decode‐and‐forward relays is considered for the case in which a source securely sends a common message to multiple destinations in the presence of a single eavesdropper. We show that the secrecy rate maximization problem in the secure multicasting scenario under an overall power constraint can be solved using semidefinite programing with semidefinite relaxation and a bisection technique. Further, a suboptimal approach using zero‐forcing beamforming and linear programming based power allocation is also proposed. Numerical results illustrate the secrecy rates achieved by the proposed schemes under secure multicasting scenarios.  相似文献   
992.
The synthesis of anisotropic metal nanostructures is strongly desired for exploring plasmon‐enabled applications. Herein, the preparation of anisotropic Au/SiO2 and Au/SiO2/Pd nanostructures is realized through selective silica coating on Au nanobipyramids. For silica coating at the ends of Au nanobipyramids, the amount of coated silica and the overall shape of the coated nanostructures exhibit a bell‐shaped dependence on the cationic surfactant concentration. For both end and side silica coating on Au nanobipyramids, the size of the silica component can be varied by changing the silica precursor amount. Silica can also be selectively deposited on the corners or facets of Au nanocubes, suggesting the generality of this method. The blockage of the predeposited silica component on Au nanobipyramids enables further selective Pd deposition. Suzuki coupling reactions carried out with the different bimetallic nanostructures functioning as plasmonic photocatalysts indicate that the plasmonic photocatalytic activity is dependent on the site of Pd nanoparticles on Au nanobipyramids. Taken together, these results suggest that plasmonic hot spots play an important role in hot‐electron‐driven plasmonic photocatalysis. This study opens up a promising route to the construction of anisotropic bimetallic nanostructures as well as to the design of bimetallic plasmonic‐catalytic nanostructures as efficient plasmonic photocatalysts.  相似文献   
993.
A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than 150°C. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than 150°C. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip‐chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a 20 μm pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at 130°C.  相似文献   
994.
This study proposes a new method to generate positive contrast in magnetic resonance imaging (MRI) using superparamagnetic contrast agents. Superparamagnetic nanostructures consisting of octahedron manganese ferrite nanoparticles embedded in spherical nanogels are fabricated using a bottom‐up approach. The composite nanoparticles are strongly magnetized in an external magnetic field and produce a unique NMR frequency shift in water protons, which can be demonstrated in MR spectroscopy and imaging to be different from the bulk pool. Moreover, the particles exhibit excellent colloidal stability in aqueous media and good cell biocompatibility. Hence, these particles are potentially useful as biomarkers by taking advantage of the positive contrast effects produced in MRI.  相似文献   
995.
Lithium–sulfur batteries are a promising next‐generation energy storage device owing to their high theoretical capacity and the low cost and abundance of sulfur. However, the low conductivity and loss of active sulfur material during operation greatly limit the rating capabilities and cycling stability of lithium–sulfur batteries. In this work, a unique sulfur host hybrid material comprising nanosized nickel sulfide (NiS) uniformly distributed on 3D carbon hollow spheres (C‐HS) is fabricated using an in situ thermal reduction and sulfidation method. In the hybrid material, the nanosized NiS provides a high adsorption capability for polysulfides and the C‐HS serves as a physical confinement for polysulfides and also a 3D electron transfer pathway. Moreover, NiS has strong chemical coupling with the C‐HS, favoring fast charge transfer and redox kinetics of the sulfur electrode. With a sulfur loading of up to 2.3 mg cm?2, the hybrid material‐based lithium–sulfur batteries offer a capacity decay as low as 0.013% per cycle and a capacity of 695 mA h g?1 at 0.5 C after 300 cycles. This unique 3D hybrid material with strong chemical coupling provides a promising sulfur host for high performance lithium–sulfur batteries.  相似文献   
996.
Vertical and in‐plane heterostructures based on van der Waals (vdW) crystals have drawn rapidly increasing attention owning to the extraordinary properties and significant application potential. However, current heterostructures are mainly limited to vdW crystals with a symmetrical hexagonal lattice, and the heterostructures made by asymmetric vdW crystals are rarely investigated at the moment. In this contribution, it is reported for the first time the synthesis of layered orthorhombic SnS–SnSxSe(1?x) core–shell heterostructures with well‐defined geometry via a two‐step thermal evaporation method. Structural characterization reveals that the heterostructures of SnS–SnSxSe(1?x) are in‐plane interconnected and vertically stacked, constructed by SnSxSe(1?x) shell heteroepitaxially growing on/around the pre‐synthesized SnS flake with an epitaxial relationship of (303)SnS//(033)SnSxSe(1?x), [010]SnS//[100]SnSxSe(1?x). On the basis of detailed morphology, structure and composition characterizations, a growth mechanism involving heteroepitaxial growth, atomic diffusion, as well as thermal thinning is proposed to illustrate the formation process of the heterostructures. In addition, a strong polarization‐dependent photoresponse is found on the device fabricated using the as‐prepared SnS?SnSxSe(1?x) core–shell heterostructure, enabling the potential use of the heterostructures as functional components for optoelectronic devices featured with anisotropy.  相似文献   
997.
Ferromagnetic insulator thin film nanostructures are becoming the key component of the state‐of‐the‐art spintronic devices, for instance, yttrium iron garnet (YIG) with low damping, high Curie temperature, and high resistivity is explored into many spin–orbit interactions related spintronic devices. Voltage modulation of YIG, with great practical/theoretical significance, thus can be widely applied in various YIG‐based spintronics effects. Nevertheless, to manipulate ferromagnetism of YIG through electric field (E‐field), instead of current, in an energy efficient manner is essentially challenging. Here, a YIG/Cu/Pt layered nanostructure with a weak spin–orbit coupling interaction is fabricated, and then the interfacial magnetism of the Cu and YIG is modified via ionic liquid gating method significantly. A record‐high E‐field‐induced ferromagnetic resonance field shift of 1400 Oe is achieved in YIG (17 nm)/Cu (5 nm)/Pt (3 nm)/ionic liquid/Au capacitor layered nanostructures with a small voltage bias of 4.5 V. The giant magnetoelectric tunability comes from voltage‐induced extra ferromagnetic ordering in Cu layer, confirmed by the first‐principle calculation. This E‐field modulation of interfacial magnetism between light metal and magnetic isolator may open a door toward compact, high‐performance, and energy‐efficient spintronic devices.  相似文献   
998.
Engineering electrode nanostructures is critical in developing high‐capacity, fast rate‐response, and safe Li‐ion batteries. This study demonstrates the synthesis of orthorhombic Nb2O5@Nb4C3Tx (or @Nb2CTx) hierarchical composites via a one‐step oxidation —in flowing CO2 at 850 °C —of 2D Nb4C3Tx (or Nb2CTx) MXene. The composites possess a layered architecture with orthorhombic Nb2O5 nanoparticles decorated uniformly on the surface of the MXene flakes and interconnected by disordered carbon. The composites have a capacity of 208 mAh g?1 at a rate of 50 mA g?1 (0.25 C) in 1–3 V versus Li+/Li, and retain 94% of the specific capacity with 100% Coulombic efficiency after 400 cycles. The good electrochemical performances could be attributed to three synergistic effects: (1) the high conductivity of the interior, unoxidized Nb4C3Tx layers, (2) the fast rate response and high capacity of the external Nb2O5 nanoparticles, and (3) the electron “bridge” effects of the disordered carbon. This oxidation method was successfully extended to Ti3C2Tx and Nb2CTx MXenes to prepare corresponding composites with similar hierarchical structures. Since this is an early report on producing this structure, there is much room to push the boundaries further and achieve better electrochemical performance.  相似文献   
999.
1000.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号