In this paper, we investigate the problem of downlink precoding for the narrowband massive multi-user multiple-input multiple-output (MU-MIMO) system with low-resolution digital-to-analog converters (DACs). We introduce a low-complexity precoding scheme based on the alternating direction method of multipliers (ADMM) framework in this work. An efficient gradient descent (GD) algorithm with adaptive step-size determination mechanism (ASGD) is proposed to alleviate the computational complexity bottleneck of the inherent matrix inversion. Numerical results demonstrate that the ASGD precoder achieves an attractive trade-off between the performance and computational complexity compared with other counterparts.
Strained Si1-xGex and Si materials are successfully grown on Si substrate by ultraviolet light chemical vapor deposition under ultrahigh vacuum at a low substrate temperature of 450℃ and 480℃,respectively.At such low temperature,autodoping effects from the substrate and interdiffusion effects at each interface could be suppressed efficiently.The strained Si1-xGex and multilayer Si1-xGex /Si structures are examined by X-ray diffraction,SMIS,etc.,and it is found that the materials have good crystallinity and the rising and falling edges are steep.The technique has a capability of growing highquality Si1-xGex /Si strained layers. 相似文献
The ionic liquid analog, formed through the mixture of urea and AlCl3, has previously shown to serve as a low‐cost electrolyte for an aluminum‐graphite battery, while maintaining good performance and achieving high Coulombic efficiency. Undesirable are the relatively high viscosity and low conductivity of this electrolyte, when compared to chloroaluminate ionic liquids with organic cations. In this work, the fundamental changes to the electrolyte resulting from using derivatives of urea (N‐methyl urea and N‐ethyl urea), again mixed with AlCl3, are examined. These electrolytes are shown to have significantly lower viscosities (η = 45, 67, and 133 cP when using N‐ethyl urea, N‐methyl urea, and urea, respectively, at 25 °C). The associated batteries exhibit higher intrinsic discharge voltages (2.04 and 2.08 V for N‐methyl urea and N‐ethyl urea electrolytes, respectively, vs 1.95 V for urea system@100 mA g?1 specific current for ≈5 mg cm?2 loading), due to changes in concentrations of ionic species. Aluminum deposition is directly observed to primarily occur through reduction of Al2Cl7? when AlCl3 is present in excess, in contrast to previously suggested cationic Al‐containing species, via operando Raman spectroscopy performed during cyclic voltammetry. 相似文献