首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   56篇
  国内免费   8篇
电工技术   15篇
综合类   4篇
化学工业   274篇
金属工艺   40篇
机械仪表   23篇
建筑科学   27篇
矿业工程   3篇
能源动力   24篇
轻工业   112篇
水利工程   4篇
石油天然气   12篇
武器工业   3篇
无线电   32篇
一般工业技术   89篇
冶金工业   21篇
原子能技术   4篇
自动化技术   69篇
  2024年   4篇
  2023年   18篇
  2022年   55篇
  2021年   66篇
  2020年   32篇
  2019年   28篇
  2018年   21篇
  2017年   26篇
  2016年   34篇
  2015年   23篇
  2014年   40篇
  2013年   41篇
  2012年   47篇
  2011年   64篇
  2010年   26篇
  2009年   32篇
  2008年   35篇
  2007年   18篇
  2006年   25篇
  2005年   24篇
  2004年   17篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   2篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1963年   1篇
  1961年   1篇
  1956年   1篇
  1926年   1篇
排序方式: 共有756条查询结果,搜索用时 15 毫秒
21.
The review highlights various aspects of the influence of chaperones on amyloid proteins associated with the development of neurodegenerative diseases and includes studies conducted in our laboratory. Different sections of the article are devoted to the role of chaperones in the pathological transformation of alpha-synuclein and the prion protein. Information about the interaction of the chaperonins GroE and TRiC as well as polymer-based artificial chaperones with amyloidogenic proteins is summarized. Particular attention is paid to the effect of blocking chaperones by misfolded and amyloidogenic proteins. It was noted that the accumulation of functionally inactive chaperones blocked by misfolded proteins might cause the formation of amyloid aggregates and prevent the disassembly of fibrillar structures. Moreover, the blocking of chaperones by various forms of amyloid proteins might lead to pathological changes in the vital activity of cells due to the impaired folding of newly synthesized proteins and their subsequent processing. The final section of the article discusses both the little data on the role of gut microbiota in the propagation of synucleinopathies and prion diseases and the possible involvement of the bacterial chaperone GroE in these processes.  相似文献   
22.
Physical chemical properties of cupuassu fat were modified by dry fractionation. Stearin and olein fractions were obtained at 29, 26, and 24 °C. Polymorphic behavior of unfractionated cupuassu fat (UCF) and its fractions were studied in situ by small-angle (SAXS) and wide-angle (WAXS) X-ray scattering using synchrotron light. Polymorphic transitions were followed in real time tempering samples with a thermal cycle. For UCF, the main polymorphic form crystallized under selected conditions was the β’2. α and β’1-forms appeared in trace amounts. β2-form was obtained after storage at 25 °C for 3 months. Stearins obtained at 26 (S-26) and 24 °C (S-24) showed a similar polymorphic behavior. However, S-26 with improved physical properties might be more suitable for chocolate production or as a trans-fat alternative than UCF. Stearin fraction obtained at 29 °C (S-29) had a complex polymorphic behavior. The α-form was the first polymorphic form detected followed by β’2-form. There was a polymorphic transition from α to β’1-form but no transition between β’-forms. They were independent to each other showing fractionation in two different solid solutions. Increased contents of the triacylglycerols (TAG) SOA and SOB together with lower contents of SOO compared to UCF led to co-crystallization because there was no complete compatibility among all TAG present in S-29. β1-form crystallized after storage forming crystals with a double-layer arrangement and a characteristic morphology. This form could be useful for accelerating crystallization process in melted liquid systems.  相似文献   
23.
Polylactide (PLA) is the most used biodegradable and biobased food packaging polymer for rigid containers and films. However, its low ductility is a hurdle for increasing its applications in flexible food packaging. A solution is the use of additives. Palm oil deodorizer distillate (PODC) is revealed to be an excellent additive promoting PLA ductility. PODC is a by‐product of vegetable oil refining, which is available in stable quality and in sufficient amounts. Amorphous PLA/PODC blends had an elongation at break of around 130% and that of semi‐crystalline blends was still around 55% compared to the initial 5% of neat PLA. At the same time the PLA rigidity and high glass transition temperatures were kept. PODC was also a very efficient processing aid, allowing for film blow extrusion. The blends were stable in properties during six months without exudation. They complied with legal norms of Food Contact Materials (EU 10/2011) and induced no sensorial alteration of packed food. Therefore PODC is a very interesting alternative to common plasticizers for the production of flexible PLA packaging films. © 2016 Society of Chemical Industry  相似文献   
24.
The formation of N2O has been studied by means of isothermal lean-rich experiments at 150, 180 and 250 °C over Pt–Ba/Al2O3 and Pt/Al2O3 catalysts with H2 and/or C3H6 as reductants. This allows to provide further insights on the mechanistic aspects of N2O formation and on the influence of the storage component. Both gas phase analysis and surface species studies by operando FT-IR spectroscopy were performed. N2O evolution is observed at both lean-to-rich (primary N2O) and rich-to-lean (secondary N2O) transitions. The production of both primary and secondary N2O decreases by increasing the temperature. The presence of Ba markedly decreases secondary N2O formation. FT-IR analysis shows the presence of adsorbed ammonia at the end of the rich phase only for Pt/Al2O3 catalyst. These results suggest that: (i) primary N2O is formed when undissociated NO in the gas phase and partially reduced metal sites are present; (ii) secondary N2O originates from reaction between adsorbed NH3 and residual NOx at the beginning of the lean phase. Moreover, N2O reduction was studied performing temperature programming temperature experiments with H2, NH3 and C3H6 as reducing agents. The reduction is completely selective to nitrogen and occurs at temperature higher than 250 °C in the case of Pt–Ba/Al2O3 catalyst, while lower temperatures are detected for Pt/Al2O3 catalyst. The reactivity order of the reductants is the same for the two catalysts, being hydrogen the more efficient and propylene the less one. Having H2 a high reactivity in the reduction of N2O, it could react with N2O when the regeneration front is developing. Moreover, also ammonia present downstream to the H2 front could react with N2O, even if the reaction with stored NOx seems more efficient.  相似文献   
25.
26.
Rhabdophane-type Eu3+,Tb3+-codoped LaPO4·nH2O single-crystal nanorods with the compositions La0.99999-xEuxTb0.00001PO4·nH2O (x?=?0–0.03), La0.99999-yTbyEu0.00001PO4·n′H2O (y?=?0–0.010), and La0.99999-zTbzEu0.000007PO4·n′′H2O (z?=?0–0.012) were hydrothermally synthesized with microwaves. It is shown that the Eu3+,Tb3+ codoping does not affect the thermal stability of these nanorods, which is due to the formation of substitutional solid solutions with both Eu3+ and Tb3+ replacing La3+ in the crystal lattice. Moreover, it is also shown that monazite-type Eu3+,Tb3+-codoped LaPO4 single-crystal nanorods can be obtained by calcining their rhabdophane-type Eu3+,Tb3+-codoped LaPO4·(n,n′ or n′′)H2O counterparts at moderate temperature in air, and that they are thermally stable. It is also observed that, for the same Eu3+,Tb3+-codoping content, the monazite-type Eu3+,Tb3+-codoped LaPO4 nanorods exhibit higher photoluminescent efficiency than the rhabdophane-type Eu3+,Tb3+-codoped LaPO4· (n,n′ or n′′)H2O nanorods. Moreover, it is found that the highest photoluminescence emission corresponds to the monazite-type La0.96999Eu0.02Tb0.00001PO4 nanorods for the La0.99999-xEuxTb0.00001PO4 system. However, for those compositions energy transfer from Tb3+ to Eu3+ does not occur. In addition, for an efficient energy transfer to occur, a content of at least 1?mol% Tb3+ is needed in all the studied materials.  相似文献   
27.
Nanocomposites have been obtained by dispersing various amounts of vapor grown carbon nanofibers within isotactic polypropylene. Thermal investigations done by differential scanning calorimetry and dynamic mechanical analysis revealed the effect of the vapor grown carbon nanofibers on the melting, crystallization, α, and β relaxations. Direct current electrical features of these nanocomposites have been investigated and related to the thermal features of these nanocomposites. The effect of the loading with carbon nanofibers on the electrical properties of these nanocomposites is discussed within the percolation theory. The percolation threshold was estimated at about 5.5% wt carbon nanofibers. The temperature dependence of the direct current conductivity is analyzed in detail and it is concluded that the electronic hopping is the dominant transport mechanism. A transition from one‐dimensional hopping towards a three‐dimensional hopping was noticed as the concentration of carbon nanofibers was increased from 10% wt to 20% wt carbon nanofiber. The possibility of a differential negative resistivity is suggested. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45297.  相似文献   
28.
The oxidative stability of chia oil was evaluated by measuring the effectiveness of the addition of rosemary (ROS) and green tea (GT) extracts, tocopherols (TOC), ascorbyl palmitate (AP) and their blends, and studying the influence of storage conditions. The addition of antioxidants increased induction time, depending on their type and concentration. Considering antioxidants individually, AP at 5,000 ppm was the most effective, whereas ROS + GT at 2,500 and 5,000 ppm provided the best protection among the antioxidant blends. Chia oil peroxide values of 10 mequiv/kg was observed for oils stored at 4 °C while values greater than 10 mequiv/kg were observed between 60 and 120 days when stored at 20 °C. Only AP 2,500 ppm protected oil did not reach 10 mequiv/kg during 225 days at 4 and 20 °C. Similar trends were observed with p-anisidine and Totox values. Differential scanning calorimetry further supported the presence of primary and secondary oxidation. Activation energy of chia oil thermoxidation was 71.9 kJ/mol increasing up to 87.5 kJ/mol when AP was added.  相似文献   
29.
30.
以Cr改性的Fe3Al预合金粉末为原料,采用粉末冶金方法制备Fe3Al多孔材料,研究氧化温度、时间、降温速度对Fe3Al多孔材料氧化膜性能的影响。结果表明:Fe3Al多孔材料的氧化增重随温度的升高而增大,氧化动力学遵循四次方规律,在800℃的大气中氧化9h,氧化膜已完全将烧结颈覆盖,晶粒细小;随着温度的升高和时间的延长,晶粒变得粗大;900℃氧化5h,膜层已出现裂纹;而降温速度对氧化增重的影响不大,也没有出现由于热膨胀不匹配而产生的裂纹。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号