首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   11篇
电工技术   1篇
综合类   1篇
化学工业   53篇
金属工艺   2篇
机械仪表   2篇
轻工业   1篇
一般工业技术   12篇
冶金工业   3篇
自动化技术   1篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   7篇
  2009年   3篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  1998年   1篇
  1991年   1篇
排序方式: 共有76条查询结果,搜索用时 0 毫秒
11.
Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly (butylene adipate-co-terephthalate) (PBAT) blend (weight ratio of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and mechanical properties were investigated. The addition of 10% RWF (both untreated and silane-treated) reduced the cell size and increased the cell density of the microcellular components. Also, the addition of 10% RWF (both untreated and silane-treated) generally increased the specific Young’s modulus and tensile strength, but decreased the specific toughness and strain-at-break in both solid and microcellular components. Moreover, unlike the neat PHBV/PBAT blend, microcellular PHBV/PBAT/RWF (both untreated and silane-treated) composites showed higher specific toughness and strain-at-break compared to their solid counterparts. In addition, higher specific toughness and strain-at-break was observed in the PHBV/PBAT/untreated-RWF composite compared with the PHBV/PBAT/silane-treated RWF composite, particularly in the microcellular components. The degree of PHBV crystallinity increased significantly in both solid and microcellular PHBV/PBAT/RWF composites although the degree of PHBV crystallinity in the solid components was slightly higher than that of their microcellular counterparts. The effects of adding 2% nanoclay on the properties of the PHBV/PBAT/silane-treated-RWF composite were also investigated. The nanoclays exhibited an intercalated structure in the composites based on XRD analysis and did not induce significant changes in the cell morphology and mechanical properties of the PHBV/PBAT/silane-treated-RWF composite. However, it did improve its thermal stability.  相似文献   
12.
Low molecular weight (MW) poly(styrene-maleic anhydride) (SMA) copolymers was employed to coat spherical alumina (Al2O3) nanoparticles to facilitate dispersion in a polycarbonate (PC) matrix. Melt compounding was done using a high intensity thermokinetic mixer (K-mixer). The low MW SMA coating produced excellent dispersion of nanoparticles in the PC nanocomposites, resulting in fairly high light transmittance even through 2 mm thick specimens. The addition of 1 wt% well-dispersed nanoparticles improved the impact strength during brittle fracture of the PC/alumina nanocomposites through the formation of multi-level microcrazes induced by the nanoparticles. However, further increasing the alumina nanoparticle content altered the energy dissipation behavior, resulting in less effective reinforcement. Various fracture mechanisms affected by the alumina nanoparticles are presented together with the effect of thermal treatment on the PC/alumina nanocomposites.  相似文献   
13.
Incorporated SiC nanoparticles are demonstrated to influence the solidification of magnesium-zinc alloys resulting in strong, ductile, and castable materials. By ultrasonically dispersing a small amount (less than 2 vol pct) of SiC nanoparticles, both the strength and ductility exhibit marked enhancement in the final casting. This unusual ductility enhancement is the result of the nanoparticles altering the selection of intermetallic phases. Using transmission electron microscopy (TEM), the MgZn2 phase was discovered among SiC nanoparticle clusters in hypoeutectic compositions. Differential thermal analysis showed that the MgZn2 formation resulted in elimination of other intermetallics in the Mg-4Zn nanocomposite and reduced their formation in Mg-6Zn and Mg-8Zn nanocomposites.  相似文献   
14.
In this study, poly(ε-caprolactone) (PCL)/sodium chloride (NaCl), PCL/poly(ethylene oxide) (PEO)/NaCl and PCL/PEO/NaCl/hydroxyapatite (HA) composites were injection molded and characterized. The water soluble and sacrificial polymer, PEO, and NaCl particulates in the composites were leached by deionized water to produce porous and interconnected microstructures. The effect of leaching time on porosity, and residual contents of NaCl and NaCl/HA, as well as the effect of HA addition on mechanical properties was investigated. In addition, the biocompatibility was observed via seeding human mesenchymal stem cells (hMSCs) on PCL and PCL/HA scaffolds.The results showed that the leaching time depends on the spatial distribution of sacrificial PEO phase and NaCl particulates. The addition of HA has significantly improved the elastic (E′) and loss moduli (E″) of PCL/HA scaffolds. Human MSCs were observed to have attached and proliferated on both PCL and PCL/HA scaffolds. Taken together, the molded PCL and PCL/HA scaffolds could be good candidates as tissue engineering scaffolds. Additionally, injection molding would be a potential and high throughput technology to fabricate tissue scaffolds.  相似文献   
15.
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications.  相似文献   
16.
The effects of annealing time and temperature on the crystallinity of injection‐molded poly(lactic acid) (PLA) were investigated using differential scanning calorimetry and wide‐angle x‐ray diffraction. Differential scanning calorimetry, tensile test, and dynamic mechanical analysis showed that an increase in crystallinity in the PLA parts from the annealing treatment offers several benefits such as a higher glass transition temperature, better heat resistance, and greater storage modulus and tensile strength. Based on the experimental data, the degree of crystallinity, annealing time, and annealing temperature were found to closely follow the time–temperature superposition relationship. Namely, a master curve could be constructed based on either the Williams–Landel–Ferry equation or the Arrhenius relationship by shifting the crystallinity isotherms in the logarithmic scale horizontally along the log‐time axis. This relationship provides a quantitative guideline for annealing postinjection‐molded PLA parts to improve the heat resistance and mechanical properties. An increase of over 17% and 26% in tensile strength was achieved at an annealing temperature of 80°C for 30 min and 65°C for 31 h, respectively. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   
17.
This study was aimed at understanding how the process conditions affect the weld‐line strength and microstructure of injection molded microcellular parts. A design of experiments (DOE) was performed and polycarbonate tensile test specimens were produced for tensile tests and microscopic analysis. Injection molding trials were performed by systematically adjusting four process parameters (i.e., melt temperature, shot size, supercritical fluid (SCF) level, and injection speed). For comparison, conventional solid specimens were also produced. The tensile strength was measured at the weld line and away from the weld line. The weld‐line strength of injecton molded microcellular parts was lower than that of its solid counterparts. It increased with increasing shot size, melt temperature, and injection speed, and was weakly dependent on the supercritical fluid level. The microstructure of the molded specimens at various cross sections were examined using scanning electron microscope (SEM) and a light microscope to study the variation of cell size and density with different process conditions.  相似文献   
18.
The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were investigated. According to the X‐ray diffraction (XRD) and transmission electron microscopy (TEM) analyses, Cloisite 30B exhibited a combination of exfoliation and heterogeneous intercalation structure for both solid and microcellular PHBV–12% HBP–2% Cloisite 30B nanocomposites. TEM images indicated that HNTs were uniformly dispersed throughout the PHBV matrix. The addition of 2% nanoclays improved the thermal stability of the resulting nanocomposites. The addition of HBP+poly(maleic anhydride‐alt‐1‐octadecene) (PA), Cloisite 30B, and HNT reduced the average cell size and increased the cell density of the microcellular components. The addition of (HBP+PA), Cloisite 30B, and HNT also increased the degree of crystallinity for both solid and microcellular components in comparison with neat PHBV. Also, with the addition of 12% (HBP+PA), the area under the tan‐δ curve, specific toughness, and strain‐at‐break of the PHBV–HBP nanocomposite increased significantly for both solid and microcellular specimens, whereas the storage modulus, specific Young's modulus, and specific tensile strength decreased. The addition of 2% nanoclays into the PHBV–HBP nanocomposites improved the storage modulus, specific Young's modulus, and specific tensile strength of the PHBV–HBP–nanoclay‐based nanocomposites, but they were still lower than those of the neat PHBV. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   
19.
Ultra‐high‐molecular weight polyethylene (UHMWPE) powder was processed using injection molding (IM) with different cavity thicknesses and injection‐compression molding (ICM). The processing parameters of feeding the powders were optimized to ensure proper dosage and avoid jeopardizing the UHMWPE molecular structure. Dynamic mechanical analysis (DMA) and Fourier‐transform infrared spectroscopy tests confirmed that the thermal and oxidative degradations of the material were avoided but crosslinking was induced during melt processing. Tensile tests and impact tests showed that the ICM samples were superior to those of IM. Increased cavity thickness and ICM were helpful for reducing the injection pressure and improving the mechanical properties due to effective packing of the material. Short shot molding showed that the UHMWPE melt did not exhibit the typical progressive and smooth melt front advancements. Due to its highly entangled polymer chains structure, it entered the cavity as an irregular porous‐like structure, as shown by short shots and micro‐computed tomography scans. A delamination skin layer (around 300‐μm thick and independent of cavity thickness) was formed on all IM sample surfaces while it was absent in the ICM samples, suggesting two different flow behaviors between IM and ICM during the packing phase. POLYM. ENG. SCI., 59:E170–E179, 2019. © 2018 Society of Plastics Engineers  相似文献   
20.
Polylactide (PLA), which is synthesized from natural resources and can degrade easier, possesses high mechanical strength, so it is a reasonable substitute for petroleum‐based plastics. Phosphites can increase the stability of PLA through chain extension with the hydroxyl and carboxyl groups simultaneously. But there are few reports on the structural effects of phosphites on the chain extension of PLA. In this article, three kinds of phosphites with different amounts of aryl and alkyl groups were used as chain extenders in PLA and were compared in detail. The molecular weights, complex viscosities, and storage moduli of virgin PLA and PLA stabilized by three different phosphites were characterized by gel permeation chromatography and rheometry. The results show that the presence of alkyl groups is not beneficial for chain extension, as the more alkyl groups there are, the worse the chain extension is. Regarding the three phosphite chain extenders added to PLA—triphenylphosphite (TPP), diphenylisooctylphosphite (PTC), and phenyldiisooctylphosphite (PDOP)—the number of alkyl groups in them can be ranked as follows: PDOP > PTC > TPP. Since PDOP had the most alkyl groups, the chain extension of PDOP was the weakest. In addition, the product, which was formed due to the chain extension of PLA and TPP, had some plastication, thus enabling PLA to move more freely and making it easier to process. J. VINYL ADDIT. TECHNOL., 25:144–148, 2019. © 2018 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号