首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   32篇
  国内免费   1篇
电工技术   2篇
化学工业   178篇
金属工艺   3篇
机械仪表   2篇
建筑科学   8篇
矿业工程   2篇
能源动力   7篇
轻工业   131篇
水利工程   1篇
石油天然气   2篇
无线电   20篇
一般工业技术   57篇
冶金工业   18篇
自动化技术   60篇
  2024年   2篇
  2023年   6篇
  2022年   41篇
  2021年   45篇
  2020年   22篇
  2019年   30篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   10篇
  2014年   22篇
  2013年   33篇
  2012年   32篇
  2011年   34篇
  2010年   23篇
  2009年   10篇
  2008年   18篇
  2007年   20篇
  2006年   10篇
  2005年   8篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   8篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
11.
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.  相似文献   
12.
Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg−1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3−δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.  相似文献   
13.
The objective of this work was to evaluate the influence of oil concentration and homogenization pressure on the emulsion and particle properties during the microencapsulation of basil essential oil by spray drying, using gum arabic as the wall material. Experiments were planned according a 22 rotational central composite design. The independent variables were oil concentration with respect to total solids (10–25%) and homogenization pressure (0–100 MPa). Emulsions were analyzed for droplet mean diameter, stability, and viscosity, and particles were analyzed for oil retention, moisture content, particle size, and morphology. Emulsion viscosity was not affected by any of the independent variables. The increase in the homogenization pressure from 0 to 100 MPa resulted in smaller emulsion droplet size (down to 0.40 µm) and, consequently, higher oil retention (up to 95%). On the other hand, higher oil loads (25%) resulted in poorer oil retention (51.22%). Microencapsulation of basil essential oil using gum arabic as the wall material proved to be a suitable process to obtain powdered basil essential oil, presenting great oil retention with the use of lower oil concentration and higher homogenization pressure.  相似文献   
14.
15.
Pure and Mn-doped lithium tantalate nanofibers, with Mn concentrations of 1%, 2.5%, and 5%, were synthesized by the electrospinning method. The morphology, microstructure, and crystal structure of as-spun and annealed composite nanofibers were characterized by scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Raman spectroscopy has shown to be a powerful tool to detect either local variations or changes of the whole structure. Position and width of one Raman line can be used as markers of a structural change. Some vibrational modes are especially associated with the site of Li or Ta ions and so, they can be affected by the introduction of dopant ions. Any damages or local changes in the microstructure can be detected by a line broadening. With the use of Raman spectroscopy, the sites where Mn ions enter the doped structures were established by recording the shift and broadening of peaks in Mn-doped structures with respect to pure lithium tantalate. Thus it was proven that Mn ions enter the Li sites for low Mn concentration and, on the other hand, for higher concentrations, the dopant substitutes Li and Ta sites. First-principles calculations were performed within the density functional theory, including lattice-dynamic calculations of the phonon modes at the zone center (Γ point), for the pure structure, to find the irreducible representation of the modes.  相似文献   
16.
17.
Epoxidized soybean oil (ESO) composites were cured with methyl tetrahydrophthalic anhydride (MTHPA) and 2,4,6-tris(dimethylaminomethyl)phenol (DEH 35) as a catalyst, sisal fibers were added at 10% and 30% of percent per weight. Composites curing was monitored using Fourier transform infrared spectroscopy, whereas the thermal stability and the degradation kinetics were investigated using thermogravimetry (TG). ESO/MTHPA/DEH35/S10 and ESO/MTHPA/DEH35/S30 composites displayed curing temperatures approximately 100°C lower related to ESO/MTHPA/DEH35, as well as higher degree of conversion. Sisal addition improved the thermal stability, shifting the weight loss shifting the weight loss onset to higher temperature (from 82 to 120°C). Thermal degradation energy was determined using Friedman, Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall models. Sisal significantly increased , especially in the intermediate phase (α = 0.2 and 0.8). The degradation kinetics was investigated by TG, and the degradation mechanisms modeled using Kamal-Sourour, Sestack-Berggren, and 1st order (F1), showed excellent fit, with R2 > 0.99. Acquired results demonstrate that sisal fiber addition benefited the curing process and increased the thermal stability of ESO composites.  相似文献   
18.
Over the last few years, the global biosurfactant market has raised due to the increasing awareness among consumers, for the use of biological or bio-based products. Because of their composition, it can be speculated that these are more biocompatible and more biodegradable than their chemical homologous. However, at the moment, no studies exist in the literature about the biodegradability of biosurfactants. In this work, a biosurfactant contained in a crude extract, obtained from a corn wet-milling industry stream that ferments spontaneously in the presence of lactic acid bacteria, was subjected to a biodegradation study, without addition of external microbial biomass, under different conditions of temperature (5–45 °C), biodegradation time (15–55 days), and pH (5–7). For that, a Box–Behnken factorial design was applied, which allowed to predict the percentage of biodegradation for the biosurfactant contained in the crude extract, between the range of the independent variables selected in the study, obtaining biodegradation values between 3 and 80%. The percentage of biodegradation for the biosurfactant was calculated based on the increase in the surface tension of samples of the crude extract. Furthermore, it was also possible to predict the variation in t1/2 for the biosurfactant (time to achieve the 50% of biodegradation) under different conditions.  相似文献   
19.
The primary characteristic of nanopowders is the high surface area and consequently high fraction of atoms on the interfaces, which changes the energy of the system. The additive distribution in the nanopowder interfaces is a fundamental aspect to control the energy, particle size, and final properties of nanopowders. In this work, the surface excess was determined using a selective lixiviation method, where a low‐water‐soluble oxide, SnO2, was used as the matrix, and a high‐water‐soluble oxide, ZnO, was used as the additive. The X‐ray photoelectron spectroscopy (XPS) analysis confirmed that ZnO segregated on SnO2 surfaces. However, after acid lixiviation the same analysis showed an undetectable surface concentration of ZnO. The evaluation of the nanostructure change and surface composition enables us to calculate the heat of segregation for the grain boundary and surface and the interface energy reduction because of segregation. At low‐ZnO concentrations, the additive solubilizes in the bulk and promotes particle growth. However, the segregation to the grain boundary and surface determines the relative stability of each interface, which promotes hard agglomeration and particle size stabilization at intermediated ZnO amounts. At high‐ZnO concentrations, the surface segregation stabilizes the solid‐gas interface and decreases the agglomeration and final particle size.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号