Flat-gain amplifiers are needed to ensure proper amplification of every channel in wavelength-division-multiplexed communication systems. Such amplifiers can be realized by combining a precisely tailored filter with an erbium-doped fiber amplifier (EDFA). In this letter, we show that Bragg gratings can lead to accurate EDFA gain equalization. Reflection and transmission gratings have been used to demonstrate gain equalization over 32 nm with excursion inferior to ±0.1 and ±0.3 dB, respectively. A maximum 0.04-dB noise-figure penalty results from this process. By extension, Bragg gratings could also equalize the gain of any arbitrary gain profile, over any arbitrary bandwidth 相似文献
In cellular networks, forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. In order to maintain an acceptable call dropping probability rate, we propose, in this paper, two new guard channel schemes: an adaptive one – New Adaptive Channel Reservation (NACR) – and a dynamic one – Predictive Reservation Policy (PRP). In NACR, for a given period of time, a given number of channels is guarded in each cell for handoff traffic. In PRP, the number of reserved channels depends on the actual number of calls in progress in the neighboring cells. An approximate analytical model of NACR is presented. A Tabu search method has been implemented in order to optimize the Grade of Service. Discrete event simulations of PRP and NACR were run. The effectiveness of the proposed methods is emphasized on a complex configuration. 相似文献
The power consumption of wireless access networks is an important issue. In this paper, the power consumption of Long Term Evolution (LTE) base stations is optimized. We consider the city of Ghent, Belgium with 75 possible LTE base station locations. We optimize the network towards two objectives: the coverage maximization and the power consumption minimization. We propose a new Barebones Self-adaptive Differential Evolution. The results of the proposed method indicate the advantages and applicability of our approach. 相似文献
The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next‐generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C60. A combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier‐free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy‐conversion and sensor technologies. 相似文献
Optical fiber sensors based on stimulated Brillouin scattering have now clearly demonstrated their excellent capability for long-range distributed strain and temperature measurements. The fiber is used as sensing element, and a value for temperature and/or strain can be obtained from any point along the fiber. After explaining the principle and presenting the standard implementation, the latest developments in this class of sensors will be introduced, such as the possibility to measure with a spatial resolution of 10 cm and below while preserving the full accuracy on the determination of temperature and strain. 相似文献
Thermal loading induces modifications of the precipitation microstructure of Al–Si–Cu–Mg alloys. This study focuses on the effect of deformation on precipitation microstructure during thermomechanical loadings. Several specimens were thermomechanically cycled while others were exposed to the same thermal cycles without any mechanical loading. The nature and morphological characteristics of the precipitation microstructure of the thermomechanically cycled specimens are compared to those of the thermally aged ones, using transmission electron microscopy (TEM), in order to assess the effect of deformation on the precipitation microstructure and especially on the kinetics of precipitate growth. The absence of any significant effect of superimposed straining during thermal cycling is discussed. Implications for the prevision of yield strength degradation during service operation are briefly presented.