首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2689篇
  免费   171篇
  国内免费   4篇
电工技术   37篇
综合类   2篇
化学工业   738篇
金属工艺   45篇
机械仪表   67篇
建筑科学   109篇
矿业工程   1篇
能源动力   91篇
轻工业   272篇
水利工程   18篇
石油天然气   3篇
无线电   231篇
一般工业技术   405篇
冶金工业   150篇
原子能技术   19篇
自动化技术   676篇
  2024年   4篇
  2023年   42篇
  2022年   144篇
  2021年   177篇
  2020年   79篇
  2019年   76篇
  2018年   117篇
  2017年   69篇
  2016年   134篇
  2015年   88篇
  2014年   128篇
  2013年   205篇
  2012年   180篇
  2011年   234篇
  2010年   144篇
  2009年   150篇
  2008年   150篇
  2007年   125篇
  2006年   106篇
  2005年   81篇
  2004年   62篇
  2003年   55篇
  2002年   41篇
  2001年   23篇
  2000年   26篇
  1999年   29篇
  1998年   41篇
  1997年   33篇
  1996年   32篇
  1995年   15篇
  1994年   18篇
  1993年   8篇
  1992年   9篇
  1990年   1篇
  1989年   6篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有2864条查询结果,搜索用时 15 毫秒
151.
This work studies the production of hydrogen peroxide through the cathodic reduction of oxygen in acidic medium, by comparing the results obtained using a commercial graphite and a gas diffusion electrode. A low pH was required to allow the application of hydrogen peroxide generation to an electro-Fenton process. The influence of applied potential and the gas flow composition were investigated. The gas diffusion electrode demonstrates a higher selectivity for hydrogen peroxide production, without significantly compromising the iron regeneration, thus making its successful application to a cathodic Fenton-like treatment, possible. Unlike the graphite cathode, the gas diffusion cathode also proved to be effective in the air flow.  相似文献   
152.
Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.  相似文献   
153.
This paper presents the results of a study of the effectiveness of submerged sacrificial anodes in preventing the onset of pitting corrosion in the emerged part of marine piles. Experimental tests were carried out on reinforced concrete columns with steel embedded both in chloride free concrete and chloride contaminated concrete in order to compare the effects of sacrificial anodes on passive steel and on corroding steel. Results have shown, at least under the present testing conditions, that sacrificial anodes may be more effective in preventing corrosion initiation (i.e. in providing cathodic prevention) than in controlling ongoing pitting corrosion (i.e. in guaranteeing cathodic protection). Monitoring criteria for this type of prevention are also discussed.  相似文献   
154.
The MEGAPIE project aimed to design, build and operate a liquid metal spallation neutron target of about 1 MW beam power in the SINQ facility at the Paul Scherrer Institut (Villigen, Switzerland). This project is an important step in the roadmap towards the demonstration of the accelerator driven system (ADS) concept and high power liquid metal targets in general. Following the design phase, an experimental program was defined to provide a complete characterization of the facility by performing a “mapping” of the neutron flux at different points, from the center of the target to the beam lines. The neutronic performance of the target was studied using different experimental techniques with the goals of validating the Monte Carlo codes used in the design of the target; additionally, the performance was compared with the solid lead targets used before and after the MEGAPIE experiment.  相似文献   
155.
The applicability of Monte Carlo techniques, namely the Monte Carlo sensitivity method and the random-sampling method, for uncertainty quantification of the effective delayed neutron fraction βeff is investigated using the continuous-energy Monte Carlo transport code, MCNP, from the perspective of statistical convergence issues. This study focuses on the nuclear data as one of the major sources of βeff uncertainty. For validation of the calculated βeff, a critical configuration of the VENUS-F zero-power reactor was used. It is demonstrated that Chiba's modified k-ratio method is superior to Bretscher's prompt k-ratio method in terms of reducing the statistical uncertainty in calculating not only βeff but also its sensitivities and the uncertainty due to nuclear data. From this result and a comparison of uncertainties obtained by the Monte Carlo sensitivity method and the random-sampling method, it is shown that the Monte Carlo sensitivity method using Chiba's modified k-ratio method is the most practical for uncertainty quantification of βeff. Finally, total βeff uncertainty due to nuclear data for the VENUS-F critical configuration is determined to be approximately 2.7% with JENDL-4.0u, which is dominated by the delayed neutron yield of 235U.  相似文献   
156.
157.
Diabetes mellitus is a comprehensive expression to identify a condition of chronic hyperglycemia whose causes derive from different metabolic disorders characterized by altered insulin secretion or faulty insulin effect on its targets or often both mechanisms. Diabetes and atherosclerosis are, from the point of view of cardio- and cerebrovascular risk, two complementary diseases. Beyond shared aspects such as inflammation and oxidative stress, there are multiple molecular mechanisms by which they feed off each other: chronic hyperglycemia and advanced glycosylation end-products (AGE) promote ‘accelerated atherosclerosis’ through the induction of endothelial damage and cellular dysfunction. These diseases impact the vascular system and, therefore, the risk of developing cardio- and cerebrovascular events is now evident, but the observation of this significant correlation has its roots in past decades. Cerebrovascular complications make diabetic patients 2–6 times more susceptible to a stroke event and this risk is magnified in younger individuals and in patients with hypertension and complications in other vascular beds. In addition, when patients with diabetes and hyperglycemia experience an acute ischemic stroke, they are more likely to die or be severely disabled and less likely to benefit from the one FDA-approved therapy, intravenous tissue plasminogen activator. Experimental stroke models have revealed that chronic hyperglycemia leads to deficits in cerebrovascular structure and function that may explain some of the clinical observations. Increased edema, neovascularization, and protease expression as well as altered vascular reactivity and tone may be involved and point to potential therapeutic targets. Further study is needed to fully understand this complex disease state and the breadth of its manifestation in the cerebrovasculature.  相似文献   
158.
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.  相似文献   
159.
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.  相似文献   
160.
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has the potential to treat a variety of neurologic and psychiatric disorders. The extent of rTMS-induced neuroplasticity may be dependent on a subject’s brain state at the time of stimulation. Chronic low intensity rTMS (LI-rTMS) has previously been shown to induce beneficial structural and functional reorganisation within the abnormal visual circuits of ephrin-A2A5-/- mice in ambient lighting. Here, we administered chronic LI-rTMS in adult ephrin-A2A5-/- mice either in a dark environment or concurrently with voluntary locomotion. One day after the last stimulation session, optokinetic responses were assessed and fluorescent tracers were injected to map corticotectal and geniculocortical projections. We found that LI-rTMS in either treatment condition refined the geniculocortical map. Corticotectal projections were improved in locomotion+LI-rTMS subjects, but not in dark + LI-rTMS and sham groups. Visuomotor behaviour was not improved in any condition. Our results suggest that the beneficial reorganisation of abnormal visual circuits by rTMS can be significantly influenced by simultaneous, ambient visual input and is enhanced by concomitant physical exercise. Furthermore, the observed pathway-specific effects suggest that regional molecular changes and/or the relative proximity of terminals to the induced electric fields influence the outcomes of LI-rTMS on abnormal circuitry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号