首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   99篇
  国内免费   3篇
电工技术   14篇
综合类   1篇
化学工业   448篇
金属工艺   44篇
机械仪表   51篇
建筑科学   47篇
矿业工程   3篇
能源动力   83篇
轻工业   181篇
水利工程   11篇
石油天然气   19篇
无线电   180篇
一般工业技术   304篇
冶金工业   355篇
原子能技术   34篇
自动化技术   253篇
  2024年   16篇
  2023年   18篇
  2022年   70篇
  2021年   86篇
  2020年   62篇
  2019年   63篇
  2018年   58篇
  2017年   61篇
  2016年   63篇
  2015年   45篇
  2014年   50篇
  2013年   96篇
  2012年   82篇
  2011年   94篇
  2010年   66篇
  2009年   75篇
  2008年   72篇
  2007年   65篇
  2006年   53篇
  2005年   62篇
  2004年   43篇
  2003年   22篇
  2002年   25篇
  2001年   26篇
  2000年   41篇
  1999年   33篇
  1998年   105篇
  1997年   77篇
  1996年   49篇
  1995年   36篇
  1994年   25篇
  1993年   36篇
  1992年   14篇
  1991年   18篇
  1990年   12篇
  1988年   16篇
  1987年   15篇
  1986年   9篇
  1985年   17篇
  1983年   12篇
  1982年   8篇
  1981年   12篇
  1980年   8篇
  1979年   9篇
  1978年   14篇
  1977年   15篇
  1976年   18篇
  1973年   6篇
  1972年   6篇
  1969年   6篇
排序方式: 共有2028条查询结果,搜索用时 15 毫秒
81.
82.
The growing production of biodiesel as a renewable source-based fuel leads to an increased amount of glycerol. Thus, it is a favorable starting material to obtain highly functionalized products. From a variety of catalytic reactions three examples, namely glycerol oxidation, glycerol hydrogenolysis and aqueous-phase reforming, were chosen for detailed studies in our group. The experimental focus for the oxidation of glycerol was set on preparation and detailed examination of supported Pt–Bi catalysts in batch reactions as well as in continuous experiments using a trickle bed reactor. For aqueous-phase reforming of glycerol to hydrogen the addition of tin to supported platinum catalysts was investigated. Ruthenium and copper based catalysts could be successfully applied in the hydrogenolysis of glycerol to 1,2-propanediol.  相似文献   
83.
In this work, metal transfer in solid wire GMA welding was studied. Several experiments with different combinations of gas-wire-parameters were carried out to observe metal transfer and to characterize the various transfer modes. A laser shadograph system with synchronized electrical signals and high speed filming were used. New modes were observed and their particular characteristics described for completeness. A classification for metal transfer, oriented to scientific personnel (researchers, scholars and students), is proposed, in which the modes are independent of the type of shielding gas or welding power source.  相似文献   
84.
An ideal adhesive lap joint is one in which the adhesive flexibility and strength properties vary along the overlap length. Because of greater adhesive shear strains at the edges of the overlap, a ductile and flexible adhesive should be used at the overlap ends, while in the middle a stiff and less-ductile adhesive should be used. This technique has been investigated in the past but only a few studies have reported any experimental evidence. In the present study, single-lap adhesive joints were manufactured and tested maintaining the same brittle adhesive in the middle of the overlap and using three different ductile adhesives of increasing ductility at the ends of the overlap. A simple joint strength prediction is proposed for mixed-adhesive joints. The mixed-adhesive technique gives joint strength improvements in relation to a brittle adhesive alone in all cases. For a mixed adhesive joint to be stronger than the brittle adhesive and the ductile adhesive used individually, the load carried by the brittle adhesive must be higher than that carried by the ductile adhesive.  相似文献   
85.
C.D. Tran  W. Humphries  S.M. Smith  C. Huynh  S. Lucas 《Carbon》2009,47(11):2662-2670
A modified process for the dry spinning of carbon nanotube (CNT) yarn is reported. The approach gives an improved structure of CNT bundles in the web drawn from the CNT forest and in the yarn produced from the twisted web leading to improved mechanical properties of the yarn. The process enables many different mechanical and physical treatments to be applied to the individual stages of the pure CNT spinning system, and may allow potential for the development of complex spinning processes such as polymer-CNT-based composite yarns. The tensile strength and yarn/web structure of yarn spun using this approach have been investigated and evaluated using standard tensile testing methods along with scanning electron microscopy. The experimental results show that the tensile properties were significantly improved. The effect of heat treatments and other yarn constructions on the tensile properties are also reported.  相似文献   
86.
In this work, PVDF composites containing 0.2% (m/m) of carbon nanotubes (MWCNTs), PVDF with 5.0% (m/m) of zinc oxide (ZnO), and composites containing both particles in the same contents in the matrix were melt processed in a mini-extruder machine with double screws, using the counter-rotation mode. Composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic-mechanical analysis (DMA), and contact angle tests (CA). The samples presented the predominance of the α phase, with an increased degree of crystallinity as well as an increase in dimensional stability by incorporating both fillers, showing a synergistic effect between these particles, as shown on FTIR, DSC, and XRD results. SEM images showed a good dispersion of high aspect ratio particles. In general, DMA and TGA analysis showed that composites had not decreased their thermal and mechanical performance when compared to neat PVDF. Results of CA analysis showed an increase in the hydrophobicity of the sample containing MWCNTs. Permeability tests were also performed using a differential pressure system, combining high temperature and pressure, obtaining permeability measures and time lag. This work presents an alternative of composite materials, suggesting its application in the internal pressure sheath layers of oil and gas flexible pipes.  相似文献   
87.
Nanocomposites of thermoplastic polyurethane (TPU) with cellulose nanocrystals (CNC) without and with surface treatment are obtained by melt processing. Nanocomposites are obtained with nanofiller weight content near of the theoretical percolation threshold (3.9 wt%). Visual observation of CNC agglomerates is sufficient to prove the inefficiency of the mixing in systems with untreated CNC. The crystallization kinetics of the TPU changes with the addition of CNC and this is confirmed by differential scanning calorimetry analysis. Thermogravimetric analysis prove that the addition of CNC increases the thermal stability of the TPU. From the rheological analysis it is possible to verify the absence of percolation and an intermediate state of sol–gel transition in the nanocomposites. CNC/TPU nanocomposites with 5 wt% of treated CNC present better mechanical performance than de neat TPU and the other processed nanocomposites and display around 130% increase in Young's modulus while retaining significant values of toughness, tensile strength and elongation at break.  相似文献   
88.
The high-temperature interaction between ~2.5 mg/cm2 of Na2SO4 and an atmospheric plasma sprayed (APS) Yb2Si2O7 topcoat–Si bond coat system on SiC CMC substrates was studied for times up to 240 h at 1000°C–1316°C in a 0.1% SO2–O2 gaseous environment. Yb2Si2O7 reacted with Na2SO4 to form Yb2SiO5 and an intergranular amorphous Na-silicate phase. Below 1200°C, the reaction was sluggish, needing days to cause morphological changes to the “splat microstructure” associated with APS coatings. The reaction was rapid at 1200°C and above, needing only a few hours for the entire topcoat to transform into a granulated microstructure consisting of Yb2SiO5 and Yb2Si2O7 phases. Na2SO4 deposits infiltrated the Yb2Si2O7 topcoat and transformed into an amorphous Na-silicate in less than 1 h at all exposure temperatures. Quantitative assessment of the Yb2SiO5 area fraction in the topcoat showed a linear decrease over time at 1316°C, attributed to reaction with the SiO2 thermally grown oxide (TGO) formed on the Si bond coat and rapid transport through the interpenetrating amorphous Na-silicate grain boundary phase. It was predicted that nearly 2 weeks is needed for complete removal of Yb2SiO5 from the topcoat at 1316°C for a single applied loading of Na2SO4.  相似文献   
89.
In this paper, we report the controlled fabrication of layer-by-layer (LbL) films deposited on gold substrates with three different supramolecular architectures using polypyrrole (Ppy) and magnetite nanoparticles (Fe3O4-np), besides conventional poly(allylamine hydrochloride) (PAH) e poly(vinyl sulfonic acid) (PVS) polyelectrolytes, demonstrating the synergistic effect between Ppy and Fe3O4-np such as a result of their interaction. Modified gold electrodes were analyzed by contact angle (wettability), surface plasmon resonance (SPR), raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The (Fe3O4-np/Ppy)3 architecture was also evaluated by scanning electron microscopy. The modified gold electrodes present more homogeneous covering, higher electron transfer and a decrease of resistance with the incorporation of the nanostructured materials such as Ppy and Fe3O4-np forming (Fe3O4-np/Ppy)3 LbL film. The results carried out in this study suggest that the (Fe3O4-np/Ppy)3 LbL film can be applied as a possible electrochemical or optical non-enzymatic sensor for analytical detection.  相似文献   
90.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号