首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
电工技术   1篇
化学工业   12篇
金属工艺   2篇
机械仪表   2篇
建筑科学   7篇
轻工业   11篇
水利工程   1篇
无线电   7篇
一般工业技术   8篇
冶金工业   13篇
自动化技术   8篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1991年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有72条查询结果,搜索用时 0 毫秒
71.
Fuels like diesel and gasoil must be desulphurised to extremely low levels before being used as hydrogen source for modern fuel cell applications and to avoid sulphur poisoning of therein used catalysts. A commercial Ni/NiO-sorbent has been identified as being able to remove even refractory sulphur species like 4,6-dimethyldibenzothiophene and the total sulphur concentration is lowered to below 0.2 ppm. The influence of temperature, residence time and level of the sulphur content in the untreated fuel has been investigated in parametric studies. Gas chromatography with mass spectrometric detection (GC–MS) of treated gasoils and diesels reveal which sulphur species are selectively removed and which are left in the fuel. The selectivity and activity of the sorbent can be influenced by the operating temperature. Moreover, GC–MS chromatograms of the breakthrough curves reveal that the sorbent capacity is related to specific sulphur species. Their molecular structure and the alkyl groups at the 4- and 6-positions of dibenzothiophene as well as the C3-benzothiophenes influence the adsorption and the sorbent capacity significantly.  相似文献   
72.
The power consumption of the agitator is a critical variable to consider in the design of a mixing system. It is generally evaluated through a dimensionless number known as the power number N p . Multiple empirical equations exist to calculate the power number based on the Reynolds number Re and dimensionless geometrical variables that characterize the tank, the impeller, and the height of the fluid. However, correlations perform poorly outside of the conditions in which they were established. We create a rich database of 100 k computational fluid dynamics (CFD) simulations. We simulate paddle and pitched blade turbines in unbaffled tanks from Re 1 to 100 and use an artificial neural network (ANN) to create a robust and accurate predictor of the power number. We perform a mesh sensitivity analysis to verify the precision of the N p values given by the CFD simulations. To sample the 100 k mixers by their geometrical and physical properties, we use the Latin hypercube sampling (LHS) method. We then normalize the data with a MinMax transformation to put all features in the same scale and thus avoid bias during the ANN's training. Using a grid search cross-validation, we find the best architecture of the ANN that prevents overfitting and underfitting. Finally, we quantify the performance of the ANN by extracting 30% of the database, predicting the N p using the ANN, and evaluating the mean absolute percentage error. The mean absolute error in the ANN prediction is 0.5%, and its accuracy surpasses correlations even for untrained geometries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号