首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   71篇
  国内免费   1篇
电工技术   28篇
化学工业   563篇
金属工艺   12篇
机械仪表   40篇
建筑科学   55篇
能源动力   50篇
轻工业   190篇
水利工程   7篇
石油天然气   2篇
武器工业   1篇
无线电   116篇
一般工业技术   272篇
冶金工业   55篇
原子能技术   17篇
自动化技术   324篇
  2024年   3篇
  2023年   11篇
  2022年   102篇
  2021年   91篇
  2020年   39篇
  2019年   42篇
  2018年   47篇
  2017年   29篇
  2016年   51篇
  2015年   51篇
  2014年   69篇
  2013年   113篇
  2012年   110篇
  2011年   111篇
  2010年   91篇
  2009年   72篇
  2008年   71篇
  2007年   82篇
  2006年   62篇
  2005年   54篇
  2004年   47篇
  2003年   50篇
  2002年   41篇
  2001年   22篇
  2000年   23篇
  1999年   28篇
  1998年   25篇
  1997年   28篇
  1996年   20篇
  1995年   13篇
  1994年   20篇
  1993年   16篇
  1992年   12篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1980年   8篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1971年   3篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1732条查询结果,搜索用时 31 毫秒
71.
The pressure and cooling rate dependence of the phase diagram of isotactic polypropylene (iPP) with the nucleating agent 1,3:2,4‐bis(3,4‐dimethylbenzylidene)‐sorbitol (DMDBS) is investigated. A custom designed dilatometer is used to measure the specific volume of the blends for a wide range of cooling rates and elevated pressures. The crystallization line in the phase diagram shifts to higher temperatures with increase in the pressure and decrease in the cooling rate, independent of the concentration. The influence of cooling rate and pressure is related to the final morphology determined from X‐ray diffraction. Dilatometry can be used as an interesting alternative to extract information on the phase behavior and crystallinity, for conditions hard or not at all obtainable with standard techniques like DSC or SALS.

  相似文献   

72.
73.
New nanocarriers are obtained by assembling two amphiphilic monomers: one containing the bioactive peptide CCK8 spaced, by a polydisperse poly(ethylene glycol), from two hydrophobic tails ((C18)2PEG2000CCK8), and the other containing a chelating agent able to give stable radiolabeled indium-111 complexes linked to the same hydrophobic moiety ((C18)2DTPAGlu). The size and shape of the supramolecular aggregates were structurally characterized by dynamic light scattering, small-angle neutron scattering, and cryogenic transmission electronic microscopy. Under the experimental conditions we investigated (pH 7.4 and molar ratio between monomers 30:70), there is the presence of high polydisperse aggregates: rod-like micelles with a radius of approximately 40 A and length >700 A, open bilayer fragments with thickness approximately 65 A, and probably vesicles. The presence of the bioactive peptide well exposed on the external surface of the aggregate allows selective targeting of nanocarriers towards the cholecystokinin receptors overexpressed by the cancerous cells. In vitro binding assays and in vivo biodistribution studies by nuclear medicine experiments using indium-111 are reported. Moreover, preliminary data concerning the drug loading capability of the aggregates and their drug efficiency on the target cells is reported by using the cytotoxic drug doxorubicin. Incubation of receptor-positive and control cells with peptide-containing aggregates filled with doxorubicin shows significantly lower cell survival in receptor-expressing cells relative to the control, for samples incubated in the presence of doxorubicin.  相似文献   
74.
Films for agricultural applications, such as greenhouses films or mulching films are generally made of polyolefins such as linear low-density polyethylene (LLDPE) or low-density polyethylene. However, the use of biodegradable and/or compostable polymers is increasing, which enjoy the additional advantage that they can be left on the site since a fine life would be gradually assimilated to the underlying soil. Nevertheless, biodegradable polymeric films often do not have suitable mechanical performances. In this work, biodegradable polymer-based nanocomposite films are prepared by film blowing and compared with traditional LLDPE based nanocomposites. In particular, a biodegradable polymer blend and two different inorganic nanofillers (an organo-modified clay and a calcium carbonate with a hydrophobic coating) are used for the preparation of the nanocomposites. A detailed investigation of obtained materials is performed through rheological, mechanical, and optical characterizations. Adding nanofillers led to an increase of rigidity and tear strength of blown films without negatively affecting their ductility.  相似文献   
75.
Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.  相似文献   
76.
The advent of 2D nanostructured materials as advanced fillers for polymer matrix composites has opened the doors to a plethora of new industrial applications requiring both electric and thermal management. Unique properties, in fact, can arise from accurate selection and processing of 2D fillers and their matrix. Here, we report an innovative family of nanocomposite membranes based on polyurethane (PU) and graphene nanoplatelets (GNPs), designed to improve thermal comfort in functional textiles. GNP particles were thoroughly characterized (through Raman, atomic force microscopy, high-resolution TEM, scanning electron microscope), and showed high crystallinity (ID/IG = 0.127), low thickness (D50 < 6–8 layers), and high lateral dimensions (D50 ≈ 3 μm). When GNPs were loaded (up to 10% wt/wt) into the PU matrix, their homogeneous dispersion resulted in an increase of the in-plane thermal conductivity of composite membranes up to 471%. The thermal dissipation of membranes, alone or coupled with cotton fabric, was further evaluated by means of an ad hoc system designed to simulate a human forearm. The results obtained provide a new strategy for the preparation of membranes suitable for technical textiles, with improved thermal comfort.  相似文献   
77.
Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.  相似文献   
78.
Magnetic magnesium alloys can be utilized as a load sensitive material, in which the inverse magnetostrictive effect is used in order to measure the actual loads in structural components manufactured from such lightweight sensor alloys. To achieve a material which exhibits magnetic properties, Mg is alloyed with ferromagnetic materials like cobalt or samarium-cobalt. Alloying elements commonly used with Mg are utilized to improve the mechanical properties of these alloys, which however may have a slight negative impact on the magnetic sensitivity. In this work, two separate magnetic Mg alloys are compared, each with properties matched to the opposing requirements: (a) high load sensitivity and (b) satisfactory mechanical properties, respectively. The precipitation behavior of the ferromagnetic constituent Co in Mg together with other alloying elements is shown on the basis of SEM images. In addition, the dissolving behavior of the Co powder during the casting process of a binary Mg–Co alloy is investigated. Cyclic loading tests employing harmonic analyses of eddy current signals are utilized in order to verify the alloys’ sensory properties. The mechanical properties are investigated using tensile tests.  相似文献   
79.
Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.  相似文献   
80.
The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号