首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6303篇
  免费   178篇
  国内免费   7篇
电工技术   50篇
综合类   2篇
化学工业   1785篇
金属工艺   75篇
机械仪表   133篇
建筑科学   211篇
矿业工程   11篇
能源动力   264篇
轻工业   1274篇
水利工程   77篇
石油天然气   28篇
无线电   298篇
一般工业技术   889篇
冶金工业   130篇
原子能技术   27篇
自动化技术   1234篇
  2024年   77篇
  2023年   90篇
  2022年   216篇
  2021年   355篇
  2020年   246篇
  2019年   297篇
  2018年   267篇
  2017年   241篇
  2016年   282篇
  2015年   200篇
  2014年   297篇
  2013年   505篇
  2012年   413篇
  2011年   477篇
  2010年   362篇
  2009年   346篇
  2008年   279篇
  2007年   281篇
  2006年   176篇
  2005年   154篇
  2004年   151篇
  2003年   121篇
  2002年   105篇
  2001年   58篇
  2000年   60篇
  1999年   51篇
  1998年   64篇
  1997年   53篇
  1996年   34篇
  1995年   32篇
  1994年   24篇
  1993年   21篇
  1992年   24篇
  1991年   21篇
  1990年   14篇
  1989年   15篇
  1988年   6篇
  1987年   6篇
  1985年   9篇
  1984年   10篇
  1983年   9篇
  1982年   5篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有6488条查询结果,搜索用时 0 毫秒
21.
The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.  相似文献   
22.
Currently, myofascial pain has become one of the main problems in healthcare systems. Research into its causes and the structures related to it may help to improve its management. Until some years ago, all the studies were focused on muscle alterations, as trigger points, but recently, fasciae are starting to be considered a new, possible source of pain. This systematic review has been conducted for the purpose of analyze the current evidence of the muscular/deep fasciae innervation from a histological and/or immunohistochemical point of view. A literature search published between 2000 and 2021 was made in PubMed and Google Scholar. Search terms included a combination of fascia, innervation, immunohistochemical, and different immunohistochemical markers. Of the 23 total studies included in the review, five studies were performed in rats, four in mice, two in horses, ten in humans, and two in both humans and rats. There were a great variety of immunohistochemical markers used to detect the innervation of the fasciae; the most used were Protein Gene Marker 9.5 (used in twelve studies), Calcitonin Gene-Related Peptide (ten studies), S100 (ten studies), substance P (seven studies), and tyrosine hydroxylase (six studies). Various areas have been studied, with the thoracolumbar fascia being the most observed. Besides, the papers highlighted diversity in the density and type of innervation in the various fasciae, going from free nerve endings to Pacini and Ruffini corpuscles. Finally, it has been observed that the innervation is increased in the pathological fasciae. From this review, it is evident that fasciae are well innerved, their innervation have a particular distribution and precise localization and is composed especially by proprioceptors and nociceptors, the latter being more numerous in pathological situations. This could contribute to a better comprehension and management of pain.  相似文献   
23.
The Principal Component Regression model of multiple responses is extended to forccast a continuous-time stochastic process. Orthogonal projection on a subspace of trigonometric functions is applied in order to estimate the principal components using discrete-time observations from a sample of regular curves. The forecasts provided by this approach are compared with classical principal component regression on simulated data.  相似文献   
24.
The β2 subunit of Na+, K+-ATPase was originally identified as the adhesion molecule on glia (AMOG) that mediates the adhesion of astrocytes to neurons in the central nervous system and that is implicated in the regulation of neurite outgrowth and neuronal migration. While β1 isoform have been shown to trans-interact in a species-specific mode with the β1 subunit on the epithelial neighboring cell, the β2 subunit has been shown to act as a recognition molecule on the glia. Nevertheless, none of the works have identified the binding partner of β2 or described its adhesion mechanism. Until now, the interactions pronounced for β2/AMOG are heterophilic cis-interactions. In the present report we designed experiments that would clarify whether β2 is a cell–cell homophilic adhesion molecule. For this purpose, we performed protein docking analysis, cell–cell aggregation, and protein–protein interaction assays. We observed that the glycosylated extracellular domain of β2/AMOG can make an energetically stable trans-interacting dimer. We show that CHO (Chinese Hamster Ovary) fibroblasts transfected with the human β2 subunit become more adhesive and make large aggregates. The treatment with Tunicamycin in vivo reduced cell aggregation, suggesting the participation of N-glycans in that process. Protein–protein interaction assay in vivo with MDCK (Madin-Darby canine kidney) or CHO cells expressing a recombinant β2 subunit show that the β2 subunits on the cell surface of the transfected cell lines interact with each other. Overall, our results suggest that the human β2 subunit can form trans-dimers between neighboring cells when expressed in non-astrocytic cells, such as fibroblasts (CHO) and epithelial cells (MDCK).  相似文献   
25.
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.  相似文献   
26.
In pretreatment tumor samples of EGFR-mutated non-small cell lung cancer (NSCLC) patients, EGFR-Thr790Met mutation has been detected in a variable prevalence by different ultrasensitive assays with controversial prognostic value. Furthermore, its detection in liquid biopsy (LB) samples remains challenging, being hampered by the shortage of circulating tumor DNA (ctDNA). Here, we describe the technical validation and clinical implications of a real-time PCR with peptide nucleic acid (PNA-Clamp) and digital droplet PCR (ddPCR) for EGFR-Thr790Met detection in diagnosis FFPE samples and in LB. Limit of blank (LOB) and limit of detection (LOD) were established by analyzing negative and low variant allele frequency (VAF) FFPE and LB specimens. In a cohort of 78 FFPE samples, both techniques showed an overall agreement (OA) of 94.20%. EGFR-Thr790Met was detected in 26.47% of cases and was associated with better progression-free survival (PFS) (16.83 ± 7.76 vs. 11.47 ± 1.83 months; p = 0.047). In LB, ddPCR was implemented in routine diagnostics under UNE-EN ISO 15189:2013 accreditation, increasing the detection rate of 32.43% by conventional methods up to 45.95%. During follow-up, ddPCR detected EGFR-Thr790Met up to 7 months before radiological progression. Extensively validated ultrasensitive assays might decipher the utility of pretreatment EGFR-Thr790Met and improve its detection rate in LB studies, even anticipating radiological progression.  相似文献   
27.
Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders’ views on AI for therapy discovery in CDG.  相似文献   
28.
Immigration to the United States presents both challenges and opportunities that affect students' academic achievement. Using a 5-year longitudinal, mixed-methods approach, we identified varying academic trajectories of newcomer immigrant students from Central America, China, the Dominican Republic, Haiti, and Mexico. Latent class growth curve analysis revealed that although some newcomer students performed at high or improving levels over time, others showed diminishing performance. Multinomial logistic regressions identified significant group differences in academic trajectories, particularly between the high-achieving youth and the other groups. In keeping with ecological–developmental and stage–environment fit theories, School Characteristics (school segregation rate, school poverty rate, and student perceptions of school violence), Family Characteristics (maternal education, parental employment, and household structure), and Individual Characteristics (academic English proficiency, academic engagement, psychological symptoms, gender, and 2 age-related risk factors, number of school transitions and being overaged for grade placement) were associated with different trajectories of academic performance. A series of case studies triangulate many of the quantitative findings as well as illuminate patterns that were not detected in the quantitative data. Thus, the mixed-methods approach sheds light on the cumulative developmental challenges that immigrant students face as they adjust to their new educational settings. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
29.
Various treatments based on drug administration and radiotherapy have been devoted to preventing, palliating, and defeating cancer, showing high efficiency against the progression of this disease. Recently, in this process, malignant cells have been found which are capable of triggering specific molecular mechanisms against current treatments, with negative consequences in the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms, including the genes—and their signaling pathway regulators—involved in the process, in order to fight tumor cells. Long non-coding RNAs, H19 in particular, have been revealed as powerful protective factors in various types of cancer. However, they have also evidenced their oncogenic role in multiple carcinomas, enhancing tumor cell proliferation, migration, and invasion. In this review, we analyze the role of lncRNA H19 impairing chemo and radiotherapy in tumorigenesis, including breast cancer, lung adenocarcinoma, glioma, and colorectal carcinoma.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号