首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   8篇
  国内免费   1篇
电工技术   3篇
综合类   4篇
化学工业   13篇
金属工艺   6篇
机械仪表   8篇
建筑科学   5篇
能源动力   26篇
轻工业   11篇
无线电   22篇
一般工业技术   23篇
冶金工业   4篇
原子能技术   1篇
自动化技术   20篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   10篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   17篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1984年   1篇
  1965年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
Our initial speaker verification study exploring the impact of mismatch in training and test conditions finds that the mismatch in sensor and acoustic environment results in significant performance degradation compared to other mismatches like language and style (Haris et al. in Int. J. Speech Technol., 2012). In this work we present a method to suppress the mismatch between the training and test speech, specifically due to sensor and acoustic environment. The method is based on identifying and emphasizing more speaker specific and less mismatch affected vowel-like regions (VLRs) compared to the other speech regions. VLRs are separated from the speech regions (regions detected using voice activity detection (VAD)) using VLR onset point (VLROP) and are processed independently during training and testing of the speaker verification system. Finally, the scores are combined with more weight to that generated by VLRs as those are relatively more speaker specific and less mismatch affected. Speaker verification studies are conducted using the mel-frequency cepstral coefficients (MFCCs) as feature vectors. The speaker modeling is done using the Gaussian mixture model-universal background model and the state-of-the-art i-vector based approach. The experimental results show that for both the systems, proposed approach provides consistent performance improvement on the conversational approach with and without different channel compensation techniques. For instance, with IITG-MV Phase-II dataset for headphone trained and voice recorder test speech, the proposed approach provides a relative improvement of 25.08?% (in EER) for the i-vector based speaker verification systems with LDA and WCCN compared to conventional approach.  相似文献   
142.
Myelin basic protein (MBP) is intrinsically disordered in solution and is considered as a conformationally flexible biomacromolecule. Here, we present a study on perturbation of MBP structure and dynamics by the denaturant guanidinium chloride (GndCl) using small-angle scattering and neutron spin–echo spectroscopy (NSE). A concentration of 0.2 M GndCl causes charge screening in MBP resulting in a compact, but still disordered protein conformation, while GndCl concentrations above 1 M lead to structural expansion and swelling of MBP. NSE data of MBP were analyzed using the Zimm model with internal friction (ZIF) and normal mode (NM) analysis. A significant contribution of internal friction was found in compact states of MBP that approaches a non-vanishing internal friction relaxation time of approximately 40 ns at high GndCl concentrations. NM analysis demonstrates that the relaxation rates of internal modes of MBP remain unaffected by GndCl, while structural expansion due to GndCl results in increased amplitudes of internal motions. Within the model of the Brownian oscillator our observations can be rationalized by a loss of friction within the protein due to structural expansion. Our study highlights the intimate coupling of structural and dynamical plasticity of MBP, and its fundamental difference to the behavior of ideal polymers in solution.  相似文献   
143.
针对多馈入直流(MIDC)系统在受端交流电网故障易引发一回或多回直流换相失败,将电压源换流器高压直流(VSC-HVDC)引入到MIDC系统中,改善LCC-HVDC逆变侧母线电压特性。建立了考虑受端系统负荷特性的简单混合MIDC系统详细模型,可将此作为未来MIDC系统的一个子单元。理论推导了该模型的有效短路比(ESCR),提出了近似计算方法。最后借助于PSCAD/EMTDC仿真,分析了LCC-HVDC逆变侧发生三相短路,简单混合MIDC系统的动作特性;研究了逆变站在不同电气距离下,LCC-HVDC换相失败免疫性指标(CFII),并以CFII验证了近似计算方法的有效性。结果表明,混合MIDC系统有助于提高ESCR,增大CFII,减少换相失败几率。  相似文献   
144.
Hydrogen is emerging as an alternative clean fuel; however, its dependency on freshwater will be a threat to a sustainable environment. Seawater, an unlimited source, can be an alternative, but its salt-rich nature causes corrosion and introduces several competing reactions, hindering its use. To overcome these, a unique catalyst composed of porous sheets of nitrogen-doped NiMo3P (N-NiMo3P) having a sheet size of several microns is designed. The presence of large homogenous pores in the basal plane of these sheets makes them catalytically more active and ensures faster mass transfer. The introduction of N and Ni into MoP significantly tunes the electronic density of Mo, surface chemistry, and metal-non-metal bond lengths, optimizing surface energies, creating new active sites, and increasing electrical conductivity. The presence of metal-nitrogen bonds and surface polyanions increases the stability and improves anti-corrosive properties against chlorine chemistry. Ultimately, the N-NiMo3P sheets show remarkable performance as it only requires overpotentials of 23 and 35 mV for hydrogen evolution reaction, and it catalyzes full water splitting at 1.52 and 1.55 V to achieve 10 mA cm−2 in 1 m KOH and seawater, respectively. Hence, structural and compositional control can make catalysts effective in realizing low-cost hydrogen directly from seawater.  相似文献   
145.
Contamination of water resources by toxic metals and opportunistic pathogens remains a serious challenge. The development of nano-adsorbents with desired features to tackle this problem is a continuously evolving field. Here, magnetic mesoporous carbon nanospheres grafted by antimicrobial polyhexamethylene biguanidine (PHMB) are reported. Detailed mechanistic investigations reveal that the electrostatic stabilizer modified magnetic nanocore interfaced mesoporous shell can be programmatically regulated to tune the size and related morphological properties. The core–shell nano-adsorbent shows tailorable shell thickness (≈20–55 nm), high surface area (363.47 m2 g−1), pore volume (0.426 cm3 g−1), radially gradient pores (11.26 nm), and abundant biguanidine functionality. Importantly, the nano-adsorbent has high adsorption capacity for toxic thallium (Tl(I) ions (≈559 mg g−1), excellent disinfection against Staphylococcus aureus and Escherichia coli (>99.99% at 2 and 2.5 µg mL−1), ultrafast disinfection kinetics rate (>99.99% within ≈4 min), and remarkable regeneration capability when exposed to polluted water matrices. The Tl(I) removal is attributed to surface complexation and physical adsorption owing to open ended mesopores, while disinfection relies on contact of terminal biguanidines with phospholipid head groups of membrane. The significance of this work lies in bringing up effective synchronic water purification technology to combat pathogenic microorganisms and toxic metal.  相似文献   
146.
Journal of Inorganic and Organometallic Polymers and Materials - In recent times, the global demand for multi-biofunctional tissue scaffolds is rising gradually. The present study deals with the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号