首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   37篇
电工技术   8篇
综合类   1篇
化学工业   314篇
金属工艺   18篇
机械仪表   17篇
建筑科学   8篇
矿业工程   1篇
能源动力   11篇
轻工业   63篇
水利工程   3篇
石油天然气   2篇
无线电   44篇
一般工业技术   125篇
冶金工业   77篇
原子能技术   2篇
自动化技术   142篇
  2024年   2篇
  2023年   7篇
  2022年   49篇
  2021年   107篇
  2020年   31篇
  2019年   19篇
  2018年   28篇
  2017年   26篇
  2016年   36篇
  2015年   24篇
  2014年   43篇
  2013年   73篇
  2012年   35篇
  2011年   48篇
  2010年   33篇
  2009年   34篇
  2008年   23篇
  2007年   29篇
  2006年   20篇
  2005年   18篇
  2004年   16篇
  2003年   7篇
  2002年   8篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   11篇
  1992年   2篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1986年   2篇
  1985年   5篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1972年   1篇
  1967年   3篇
  1964年   1篇
排序方式: 共有836条查询结果,搜索用时 843 毫秒
671.
Mesenchymal stem cells (MSCs) are considered to be a powerful tool in the treatment of various diseases. Scientists are particularly interested in the possibility of using MSCs in cancer therapy. The research carried out so far has shown that MSCs possess both potential pro-oncogenic and anti-oncogenic properties. It has been confirmed that MSCs can regulate tumor cell growth through a paracrine mechanism, and molecules secreted by MSCs can promote or block a variety of signaling pathways. These findings may be crucial in the development of new MSC-based cell therapeutic strategies. The abilities of MSCs such as tumor tropism, deep migration and immune evasion have evoked considerable interest in their use as tumor-specific vectors for small-molecule anticancer agents. Studies have shown that MSCs can be successfully loaded with chemotherapeutic drugs such as gemcitabine and paclitaxel, and can release them at the site of primary and metastatic neoplasms. The inhibitory effect of MSCs loaded with anti-cancer agents on the proliferation of cancer cells has also been observed. However, not all known chemotherapeutic agents can be used in this approach, mainly due to their cytotoxicity towards MSCs and insufficient loading and release capacity. Quinazoline derivatives appear to be an attractive choice for this therapeutic solution due to their biological and pharmacological properties. There are several quinazolines that have been approved for clinical use as anticancer drugs by the US Food and Drug Administration (FDA). It gives hope that the synthesis of new quinazoline derivatives and the development of methods of their application may contribute to the establishment of highly effective therapies for oncological patients. However, a deeper understanding of interactions between MSCs and tumor cells, and the exploration of the possibilities of using quinazoline derivatives in MSC-based therapy is necessary to achieve this goal. The aim of this review is to discuss the prospects for using MSC-based cell therapy in cancer treatment and the potential use of quinazolines in this procedure.  相似文献   
672.
Trans-ferulic acid (FA) is a derivative of 4-hydroxycinnamic acid, which is found in many food products, fruits and beverages. It has scientifically proven antioxidant, anti-inflammatory and antibacterial properties. However, its low ability to permeate through biological barriers (e.g., the blood–brain barrier, BBB), its low bioavailability and its fast elimination from the gastrointestinal tract after oral administration limit its clinical use, e.g., for the treatment of neurodegenerative diseases, such as Alzheimer’s disease. Therefore, new nanotechnological approaches are developed in order to regulate intracellular transport of ferulic acid. The objective of this review is to summarize the last decade’s research on biological properties of ferulic acid and innovative ways of its delivery, supporting pharmacological therapy.  相似文献   
673.
Metastasis is one of the most urgent issues in breast cancer patients. One of the factors necessary in the migration process is the remodeling of the extracellular matrix (ECM). Metalloproteinases (MMPs) can break down the elements of the ECM, which facilitates cell movement. Many highly aggressive tumors are characterized by high levels of MMPs. In the case of breast cancer, the association between MMP-9 and the migration potential and invasiveness of cells has been demonstrated. In addition, reports indicating increased migration of breast cancer cells after the administration of the commonly used cytostatic cyclophosphamide (CP) are particularly disturbing. Hence, our research aimed to assess the effect of CP treatment on MDA-MB-231 and MCF-7 cells and how this response is influenced by the downregulation of the MMP-9 level. The obtained results suggest that CP causes a decrease in the survival of breast cancer cells of various invasiveness, and the downregulation of MMP-9 enhances this effect, mainly by inducing apoptosis. Moreover, in the group of MMP-9 siRNA-transfected CP-treated cells, a more severe reduction in invasion and migration of cells of both lines was observed, as indicated by the migration and invasion transwell assays and Wound healing assay. Hence, we suggest that CP alone may not result in satisfactory therapeutic effects. On the other hand, the use of combination therapy targeting MMP-9, together with the CP, could improve the effectiveness of the treatment. Additionally, we confirmed a relationship between the levels of MMP-9 and cytokeratin 19 (CK19).  相似文献   
674.
The design of autonomous characters capable of planning their own motions continues to be a challenge for computer animation. We present a novel kinematic motion‐planning algorithm for character animation which addresses some of the outstanding problems. The problem domain for our algorithm is as follows: given a constrained environment with designated handholds and footholds, plan a motion through this space towards some desired goal. Our algorithm is based on a stochastic search procedure which is guided by a combination of geometric constraints, posture heuristics, and distance‐to‐goal metrics. The method provides a single framework for the use of multiple modes of locomotion in planning motions through these constrained, unstructured environments. We illustrate our results with demonstrations of a human character using walking, swinging, climbing, and crawling in order to navigate through various obstacle courses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
675.
Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research.  相似文献   
676.
The 13C-NMR approach to quantitative analysis of a polyester resin synthesized from dimethylterephthalate, ethylene glycol, tris-(2-hydroxyethyl)isocyanurate (THEIC), and glycerol is presented. Various glyceride and isocyanurate structures formed during the esterification have been identified and analyzed, at first in simple model systems and then in the structure of the resin. The contents of particular structural units were determined as well as a hypothetical average macromolecule of the resin defined. The assignments of 13C-NMR signals were made and correlated with the 1H shifts using a 2D-HETCOR experiment. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 675–687, 1998  相似文献   
677.
Ostarine (also known as enobosarm or Gtx-024) belongs to the selective androgen receptor modulators (SARMs). It is a substance with an aryl-propionamide structure, classified as a non-steroidal compound that is not subjected to the typical steroid transformations of aromatization and reduction by α5 reductase. Despite ongoing research on ostarine, knowledge about it is still limited. Earlier studies indicated that ostarine may affect the metabolism of muscle tissue, but this mechanism has not been yet described. We aimed to investigate the effect of ostarine on the differentiation and metabolism of muscle. Using C2C12 and L6 cells, as well as muscles obtained from rats administered ostarine, we showed that ostarine stimulates C2C12 and L6 proliferation and cell viability and that this effect is mediated by androgen receptor (AR) and ERK1/2 kinase activation (p < 0.01). We also found that ostarine stimulates muscle cell differentiation by increasing myogenin, MyoD, and MyH expression in both types of cells (p < 0.01). Moreover, pharmacological blocking of AR inhibits the stimulatory effect of ostarine. We further demonstrated that 30 days of ostarine administration increases myogenin, MyoD, and MyH expression, as well as muscle mass, in rats (p < 0.01). Based on our research, we conclude that ostarine stimulates muscle tissue proliferation and differentiation via the androgen receptor.  相似文献   
678.
Progress toward translating superparamagnetic iron oxide nanoparticles (SPIONs) with specific diagnostic and therapeutic properties for clinical applications depends on developing and implementing appropriate methodologies that would allow in-depth characterizations of their behavior in a real biological environment. Herein, we report a versatile approach for studying interactions between SPIONs and proteins using single-particle inductively coupled plasma tandem mass spectrometry. By monitoring the changes in the size distribution upon exposure to human serum, the formation of stable protein corona is revealed, accompanied by particle disaggregation.  相似文献   
679.
The existing clinical protocols of hepatoma treatment require improvement of drug efficacy that can be achieved by harnessing nanomedicine. Porphyrin-based, paddle-wheel framework (PPF) structures were obtained and tested as dual-kinetic Sorafenib (SOR) nanocarriers against hepatoma. We experimentally proved that sloughing of PPF structures combined with gradual dissolving are effective mechanisms for releasing the drug from the nanocarrier. By controlling the PPF degradation and size of adsorbed SOR deposits, we were able to augment SOR anticancer effects, both in vitro and in vivo, due to the dual kinetic behavior of SOR@PPF. Obtained drug delivery systems with slow and fast release of SOR influenced effectively, although in a different way, the cancer cells proliferation (reflected with EC50 and ERK 1/2 phosphorylation level). The in vivo studies proved that fast-released SOR@PPF reduces the tumor size considerably, while the slow-released SOR@PPF much better prevents from lymph nodes involvement and distant metastases.  相似文献   
680.
Two aminoalkanol derivatives of 1,7-diEthyl-8,9-diphenyl-4azatricyclo (5.2.1.02.6) dec-8-ene-3,5,10-trione and two derivatives of 1,7-diMethyl-8,9-diphenyl-4-azatricyclo (5.2.1.02.6) dec-8-ene-3,5,10-trione were evaluated in vitro for their inhibition efficacy of acetylcholinesterase. The Km, Vmax, slope angles of Lineweaver–Burk plots, Ki and IC50 values showed that all four aminoalkanol derivatives are competitive inhibitors of acetylcholinesterase whose inhibitory potency depends, to a varying extent, on the nature of the four different substituents present in the main compound structure. Studies have shown that the most potent acetylcholinesterase inhibitors are derivatives containing isopropylamine and/or methyl substituents in their structure. In contrast, dimethylamine and/or ethyl substituents seem to have a weaker, albeit visible, effect on the inhibitory potency of acetylcholinesterase. Additionally, docking studies suggest that studied compounds binds with the peripheral anionic site and not enter into the catalytic pocket due to the presence of the sterically extended substituent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号