首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   121篇
  国内免费   3篇
电工技术   28篇
综合类   2篇
化学工业   472篇
金属工艺   43篇
机械仪表   61篇
建筑科学   46篇
矿业工程   5篇
能源动力   44篇
轻工业   299篇
水利工程   19篇
石油天然气   13篇
无线电   82篇
一般工业技术   357篇
冶金工业   178篇
原子能技术   16篇
自动化技术   189篇
  2024年   4篇
  2023年   23篇
  2022年   51篇
  2021年   88篇
  2020年   43篇
  2019年   63篇
  2018年   67篇
  2017年   82篇
  2016年   69篇
  2015年   41篇
  2014年   62篇
  2013年   129篇
  2012年   97篇
  2011年   100篇
  2010年   93篇
  2009年   83篇
  2008年   77篇
  2007年   73篇
  2006年   65篇
  2005年   45篇
  2004年   41篇
  2003年   38篇
  2002年   54篇
  2001年   28篇
  2000年   22篇
  1999年   28篇
  1998年   72篇
  1997年   44篇
  1996年   36篇
  1995年   27篇
  1994年   20篇
  1993年   18篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   5篇
  1987年   1篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   11篇
  1975年   1篇
排序方式: 共有1854条查询结果,搜索用时 31 毫秒
21.
Two-phase partitioning bioreactors offer many advantages for the removal of toxic pollutants. In particular, such systems can be loaded with very large quantities of pollutants without risks of microbial inhibition, they are self-regulated and they prevent the risks of hazardous pollutant volatilisation during aerobic treatment. However, their potential has never been tested at low temperatures. Phenol biodegradation by a cold adapted Pseudomonas strain was therefore tested at 14 or 4 degrees C using 2-undecanone, diethyl sebacate or 2-decanone as organic phases in a two-phase partitioning bioreactor. The three solvents were biocompatible at 14 degrees C but evidence was found that diethyl sebacate was biodegraded by the bacteria and this solvent was not tested further. Although only 2-decanone was suitable at 4 degrees C, phenol biodegradation was more efficient in 2-undecanone at 14 degrees C, reaching a maximum volumetric rate (based on the volume of aqueous phase) of approximately 1.94 g/L.day after 47 h of cultivation. In 2-decanone at 14 degrees C, evidence was found that phenol degradation was limited by the release of biosurfactants, which increased the solubility and toxicity of the solvent in the aqueous phase inhibiting microbial activity. This study therefore shows that pollutant removal at low temperature is feasible but that the production of biosurfactants can have a negative impact on the process and must be taken into consideration when selecting the organic solvent. Future work should therefore focus on the selection of solvents suitable for use at temperatures below 14 degrees C.  相似文献   
22.
BACKGROUND: Nisin is a commercially available bacteriocin produced by Lactococcus lactis ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. Lactococcus lactis ATCC 11454 was developed in a rotary shaker (30 °C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L?1 and without pH adjustment, both autoclaved at 121 °C for 30 min, and (ii) filtrated (1.20 µm and 0.22 µm membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media. RESULTS: The results showed that culture media composed of milk whey without filtration supplied L. lactis its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L?1 in the second transfer, and up to 1628‐fold higher than the filtrated milk whey, 6.83 mg.L?1 obtained in the firstt transfer. CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high‐value bioproducts and contributing to decreasing river disposals by dairy industries. Copyright © 2008 Society of Chemical Industry  相似文献   
23.
This work presents a method for synthesizing testable continuous-time linear time-invariant electrical networks using 1st order blocks for the implementation of analog linear circuits. A functional-structural fault model for the block, and a fault dictionary are proposed together with a simple set of test vectors. The method allows, also, the fault grade evaluation for the modeled faults. The results obtained from the two application examples have shown the suitability of the approach as a design for test method for analog circuits.  相似文献   
24.
Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.  相似文献   
25.
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.  相似文献   
26.
Reactor blends of polyethylene/poly(ethylene-co-1-octene) resins with bimodal molecular weight and bimodal short chain branching distributions were synthesized in a two-step polymerization process. The compositions of these blends range from low molecular weight (LMW) homopolymer to high molecular weight (HMW) copolymer and vice versa HMW homopolymer to LMW copolymer. The shear flow characteristics of these polymers in the typical processing range mostly depend on the molecular weight and MWD of the polymer and are independent of the short chain branch content. From oscillatory shear measurements, it was observed that the viscosity of HMW polymers was reduced with the addition of LMW material. For the polymers produced with this two-step polymerization process, the LMW homopolymer and HMW copolymer blends and HMW homopolymer and LMW copolymer blends were melt miscible, despite the large viscosity differences of the pure components.  相似文献   
27.
We have investigated the adsorption and reaction of methanol with Au/TiO2 catalysts using a pulsed flow reactor, DRIFTS and TPD. The TiO2 (P25) surface adsorbed a full monolayer of methanol, much of it in a dissociative manner, forming methoxy groups associated with the cationic sites, and hydroxyl groups at the anions. The methoxy is relatively stable until 250 °C, at which point decomposition occurs, producing mainly dimethyl ether by a bimolecular surface reaction. As the concentration of methoxy on the surface diminishes, so the mechanism reverts to a de-oxygenation pathway, producing mainly methane and water (at ~330 °C in TPD), but also with some coincident CO and hydrogen. Au catalysts were prepared by the deposition-precipitation method to give Au loadings between 0.5–3 wt %. The effect of low levels of Au on the reactivity is marked. The pathway which gives methane, which is characteristic of titania, remains, but a new feature of the reaction is the evolution of CO2 and H2 at lower temperature (a peak is seen in TPD at 220 °C), and the elimination of the DME-producing state. Clearly this is associated with the presence of Au and appears to be due to the production of a formate species on the surface of the Au component. This formate species is mainly involved in the reaction of methanol with the Au/TiO2 catalysts which results in a combustion pathway being followed, with complete conversion occurring by ~130 °C.  相似文献   
28.
The mechanical properties of epoxy networks based on diglycidyl ether of bisphenol A epoxy resin cured with various linear aliphatic amines, such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and cyclic amines such as 1‐(2‐aminoethyl)piperazine and isophorone diamine, were studied. General characteristics such as Tg, density, and packing density, were determined and related to the structure and funcionality of the curing agent. Dynamic mechanical spectra were used to study both the α and β relaxations. Tensile and the flexural tests were used to determine the Young's and flexural modulus, and fracture strength all in the glassy state. Furthermore, linear elastic fracture mechanics was used to determine KIC. As a rule, isophorone diamine network presented the higher tensile and flexure modulus while 1‐(2‐aminoethyl)piperazine gave the highest toughness properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
29.
Reactor blends of polyethylene/poly(ethylene-co-1-octene) resins with bimodal molecular weight and bimodal short chain branching distributions were synthesized in a two-step polymerization process. The compositions of these blends range from low molecular weight (LMW) homopolymer to high molecular weight (HMW) copolymer and, vice versa, HMW homopolymer to LMW copolymer. The physical properties of the blends were found to be consistent with the nature of the individual components. For the tensile properties, the stiffness decreases with increasing the fraction of the copolymer, regardless of the molecular weight of the homopolymer fraction. For these blends with bimodal microstructures, it was confirmed that the degree of crystallinity governs the stiffness of the polymer. However, the energy dampening properties of the polymers benefit from the presence of the copolymer. A balance of stiffness and toughness can be obtained by altering the composition of the blends. For some blends, the presence of HMW homopolymer can dominate the tensile properties, showing little variation in the stiffness with increased addition of copolymer. It was also demonstrated that the testing conditions and thermal treatment of the polymer greatly influence the resulting elastic and energy dampening properties. Depending on the desired application, annealing these polymers (especially very low density copolymers) not only increases the crystallinity and stiffness, but also changes the frequency response of the dynamic mechanical properties.  相似文献   
30.
The polymerization of α-methylstyrene (αMeSty) initiated by HI/I2 or HI in the presence of liquid sulfur dioxide has been investigated. The number-average molecular weight increased with the monomer concentration for reactions initiated by the HI/I2 system. I2 also participates in the initiation process, increasing the number-average polymer chain at higher monomer concentration. HI alone is also able to initiate the polymerization of αMeSty in the presence of SO2. With this initiator, transfer reaction can be minimized in systems containing low amount of SO2. Received: 19 December 1996/Revised: 27 January 1997/Accepted 29 January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号