首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37879篇
  免费   14801篇
  国内免费   13篇
电工技术   723篇
综合类   4篇
化学工业   17305篇
金属工艺   397篇
机械仪表   715篇
建筑科学   1688篇
矿业工程   2篇
能源动力   851篇
轻工业   7211篇
水利工程   284篇
石油天然气   81篇
无线电   6892篇
一般工业技术   11528篇
冶金工业   588篇
原子能技术   12篇
自动化技术   4412篇
  2023年   21篇
  2022年   73篇
  2021年   288篇
  2020年   1470篇
  2019年   3213篇
  2018年   3168篇
  2017年   3468篇
  2016年   3927篇
  2015年   3978篇
  2014年   3905篇
  2013年   5037篇
  2012年   2712篇
  2011年   2349篇
  2010年   2650篇
  2009年   2521篇
  2008年   2047篇
  2007年   1874篇
  2006年   1640篇
  2005年   1366篇
  2004年   1341篇
  2003年   1309篇
  2002年   1255篇
  2001年   1091篇
  2000年   1062篇
  1999年   455篇
  1998年   55篇
  1997年   53篇
  1996年   27篇
  1995年   26篇
  1994年   28篇
  1993年   24篇
  1992年   26篇
  1991年   23篇
  1990年   18篇
  1989年   13篇
  1988年   13篇
  1987年   20篇
  1986年   21篇
  1985年   16篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1978年   8篇
  1977年   9篇
  1976年   12篇
  1975年   6篇
  1974年   8篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
62.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
63.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
64.
The qualitative properties of processed cheese (PC) fortified with different levels of asparagus powder (AP) (0.5%, 1% and 1.5% wt/wt) were evaluated during storage. AP decreased the pH and lipolysis indexes and increased the phenolic content, antioxidant activity and proteolysis of the processed cheeses. AP made the structure of the cheese more elastic, increased the rigidity and decreased the spreadability compared with the control sample, which corresponded to the results obtained using dynamic oscillatory rheometry. The results showed that AP as a rich source of bioactive components could be used for the fortification of processed cheeses.  相似文献   
65.
A series of random polyesteramides (PEAs) with a range of molar composition from 90/10 to 50/50 were synthesized by direct melt polycondensation of ε‐caprolactone and l ‐alanine. Their structure was fully characterized by Fourier transform IR and NMR spectroscopy. The resulting copolymers are completely amorphous with the exception of PEA‐90/10 which possesses a semicrystalline structure. These PEAs present increasing glass transition temperatures at increasing l ‐alanine contents and exhibit fairly good thermal stability with 10% mass loss temperatures reaching 315 °C. © 2020 Society of Industrial Chemistry  相似文献   
66.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
67.
68.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
69.
This study assessed the collection efficiency (CE) of two popularly used sampling devices (BioSampler and Coriolis sampler) for fungal aerosols. Phosphate‐buffered saline (PBS) supplemented with or without surfactant (Tween‐20, Tween‐80, or Triton X‐100) and antifoam agent was prepared and used as collection liquids. The agar impactor (BioStage) was simultaneously operated with liquid‐based samplers to collect fungi from seven sites located at a university building, public library, and animal farming. Fungal concentrations determined by liquid samplers were divided by those by BioStage, and the ratio values represented CE. Results indicate that the CE of BioSampler was superior to that of Coriolis (P = 0.0001) and the PBS containing surfactant collected fungi better than that without surfactant (P < 0.0001), whereas antifoam agent showed no influence (P = 0.8). Moreover, fungal concentrations determined by BioSampler with surfactant‐added PBS were statistically indifferent from those by BioStage (P > 0.05) with a Spearman correlation coefficient of 0.81‐0.83 (P < 0.01). In addition to sampler and collection liquid, sampling location was also identified as a significant CE factor (P = 0.006), implying potential influences by fungal genera in the studied fields. Overall, BioSampler with surfactant‐supplemented PBS (eg, Triton X‐100) is recommended considering the great CE and compatibility with a variety of analytical assays.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号