Recently, new strains of Fasciola demonstrated drug resistance, which increased the need for new drugs or improvement of the present drugs. Nanotechnology is expected to open some new opportunities to fight and prevent diseases using an atomic scale tailoring of materials. The ability to uncover the structure and function of biosystems at the nanoscale, stimulates research leading to improvement in biology, biotechnology, medicine and healthcare. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Therefore, this work aimed to isolate fungal strains from Taif soil samples, which have the ability to synthesize silver nanoparticles. The fungus Trichoderma harzianum, when challenged with silver nitrate solution, accumulated silver nanoparticles (AgNBs) on the surface of its cell wall in 72 h. These nanoparticles, dislodged by ultrasonication, showed an absorption peak at 420 nm in a UV-visible spectrum, corresponding to the plasmon resonance of silver nanoparticles. The transmission electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodisperse silver nanoparticles (average particle size: 4.66 nm) by the fungus. The percentage of non hatching eggs treated with the Triclabendazole drug was 69.67%, while this percentage increased to 89.67% in combination with drug and AgNPs. 相似文献
Prostate cancer is widely observed to be biologically heterogeneous. Its heterogeneity is manifested histologically as multifocal prostate cancer, which is observed more frequently than unifocal prostate cancer. The clinical and prognostic significance of either focal cancer type is not fully established. To investigate prostate cancer heterogeneity, the genetic profiles of multifocal and unifocal prostate cancers were compared. Here, we report observations deduced from tumor-tumor comparison of copy number alteration data of both focal categories. Forty-one fresh frozen prostate cancer foci from 14 multifocal prostate cancers and eight unifocal prostate cancers were subjected to copy number variation analysis with the Affymetrix SNP 6.0 microarray tool. With the investigated cases, tumors obtained from a single prostate exhibited different genetic profiles of variable degrees. Further comparison identified no distinct genetic pattern or signatures specific to multifocal or unifocal prostate cancer. Our findings suggest that samples obtained from multiple sites of a single unifocal prostate cancer show as much genetic heterogeneity and variability as separate tumors obtained from a single multifocal prostate cancer. 相似文献
Decoupling the constitutive equations from the balance and constraint equations allows for reformulating a conventional forward problem into two reverse problems. The first reverse problem is the reverse of a simulation problem, where the process model is solved in terms of the constitutive (synthesis/design) variables instead of the process variables, thus providing the synthesis/design targets. The second reverse problem (reverse property prediction) solves the constitutive equations to identify unit operations, operating conditions and/or products by matching the synthesis/design targets. Visualization of the problem is achieved by employing recently developed property clustering techniques, which allows a high-dimensional problem to be visualized in two or three dimensions. The clusters by definition satisfy intra-stream and inter-stream conservation through linear “mixing” rules, which allows for the development of consistent additive rules along with their ternary representation. 相似文献
Objectives: To investigate the effect of different self-etch adhesive systems application techniques: active or passive in a single or double layer on adhesive–dentin microshear bond strength.
Methods: Occlusal surfaces of 48 extracted human molars were ground to expose flat superficial dentin surfaces. Specimens were randomly divided into two main groups according to the tested self-etch adhesive system either: One-step self-etch (AdperTM easy-one) or two-step self-etch (AdperTM SE Plus). Each adhesive system was applied on the prepared dentin surfaces followed one of these techniques: (1) Passive application of a single layer, (2) Active application of single layer, (3) Passive application of double adhesive layer (with light curing in between), and (4) Active application of double adhesive layers. Resin composite was packed inside micro-tubes fixed on the bonded dentin surfaces and light cured for 40 s. All specimens were stored in artificial saliva either for 24 h or 3 months before testing. Microshear bond strength test was employed using a universal testing machine at a crosshead speed of 0.5 mm/min.
Results: AdperTM SE Plus showed higher significant microshear bond strength in compared with AdperTM easy-one. For both adhesive systems active application showed higher significant microshear bond strength to dentin than passive application. Double application of adhesive systems showed lower microshear bond strength than single application.
Conclusion: Active application of self-etch adhesives could improve the dentin microshear bond strength. Double application with curing in between the layers did not improve the bond strength to the tested adhesive. 相似文献
A novel magnetic nano-sorbent was synthesized by Schiff’s base formation via covalent bonding of gelatin to the surface of nano-magnetite-immobilized-3-aminopropyltrimethoxysilane (Nano-Fe3O4-Si-N=Gelatin). The structure was confirmed by the FT-IR, TGA, and SEM. The maximum capacity of Cd(II) and Pb(II) were identified as 440 and 400 µmol g?1, respectively. The separation characteristics were evaluated in presence of various controlling factors. The sorption processes of Cd(II) and Pb(II) were found to follow the postulates of Langmuir, Brunauer-Emmer-Teller, and Dubinin Radushkevich isotherm models. The potential applications of Nano-Fe3O4-Si-N=Gelatin in water treatment of Cd(II) and Pb(II) were successfully accomplished using a micro-column technique. 相似文献
The 3D metal–organic framework (MOF), MIL-88B, built from the trivalent metal ions and the ditopic 1,4-Benzene dicarboxylic acid linker (H2BDC), distinguishes itself from the other MOFs for its flexibility and high thermal stability. MIL-88B was synthesized by a rapid microwave-assisted solvothermal method at high power (850 W). The iron-based MIL-88B [Fe3.O.Cl.(O2C–C6H4–CO2)3] exposed oxygen and iron content of 29% and 24%, respectively, which offers unique properties as an oxygen-rich catalyst for energetic systems. Upon dispersion in an organic solvent and integration into ammonium perchlorate (AP) (the universal oxidizer for energetic systems), the dispersion of the MOF particles into the AP energetic matrix was uniform (investigated via elemental mapping using an EDX detector). Therefore, MIL-88B(Fe) could probe AP decomposition with the exclusive formation of mono-dispersed Fe2O3 nanocatalyst during the AP decomposition. The evolved nanocatalyst can offer superior combustion characteristics. XRD pattern for the MIL-88B(Fe) framework TGA residuals confirmed the formation of α-Fe2O3 nanocatalyst as a final product. The catalytic efficiency of MIL-88B(Fe) on AP thermal behavior was assessed via DSC and TGA. AP solely demonstrated a decomposition enthalpy of 733 J g?1, while AP/MIL-88B(Fe) showed a 66% higher decomposition enthalpy of 1218 J g?1; the main exothermic decomposition temperature was decreased by 71 °C. Besides, MIL-88B(Fe) resulted in a decrease in AP decomposition activation energy by 23% and 25% using Kissinger and Kissinger–Akahira–Sunose (KAS) models, respectively.