首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1511篇
  免费   90篇
  国内免费   13篇
电工技术   36篇
综合类   7篇
化学工业   424篇
金属工艺   36篇
机械仪表   63篇
建筑科学   45篇
矿业工程   5篇
能源动力   123篇
轻工业   97篇
水利工程   31篇
石油天然气   21篇
无线电   125篇
一般工业技术   273篇
冶金工业   32篇
原子能技术   22篇
自动化技术   274篇
  2024年   7篇
  2023年   31篇
  2022年   47篇
  2021年   102篇
  2020年   72篇
  2019年   107篇
  2018年   119篇
  2017年   119篇
  2016年   99篇
  2015年   85篇
  2014年   74篇
  2013年   177篇
  2012年   119篇
  2011年   128篇
  2010年   67篇
  2009年   60篇
  2008年   48篇
  2007年   25篇
  2006年   18篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1614条查询结果,搜索用时 0 毫秒
51.
Unmodified polyvinyl chloride (PVC) has low thermal stability and high hardness. Therefore, using plasticizers as well as thermal stabilizers is inevitable, while it causes serious environmental and health issues. In this work, for the first time, pure food-grade PVC with potential biomedical applications is processed and 3D printed. Samples are successfully 3D printed using different printing parameters, including velocity, raster angle, nozzle diameter, and layer thickness, and their mechanical properties are investigated in compression, bending, and tension modes. Scanning electron microscopy is also used to evaluate the bonding and microstructure of the printed layers. Among the mentioned printing parameters, raster angle and printing velocity influence the mechanical properties significantly, whereas the layer thickness and nozzle diameter has a little effect. Images from scanning electron microscopy  also reveal that printing velocity greatly affects the final part's quality regarding defective voids and rasters’ bonding. The maximum tensile strength of 88.55 MPa is achieved, which implies the superiority of 3D-printed PVC mechanical properties compared to other commercial filaments. This study opens an avenue to additively manufacture PVC that is the second most-consumed polymer with cost-effective and high-strength features.  相似文献   
52.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
53.
BACKGROUND: Several researchers have investigated the use of chitosan as an adsorbent for removal of heavy metals from aqueous streams. Chitosan flake or powder swells and crumbles making it unsuitable for use in an adsorption column. Chitosan also has a tendency to agglomerate or form a gel in aqueous media. The adsorption capacity can be enhanced by spreading chitosan on physical supports that can increase the accessibility of the metal binding sites. Although several attempts have been made to enhance the adsorption capacity of chitosan, using various chemicals, the sorption capacity for metal ions decreased after cross‐linking of chitosan. RESULTS: Bentonite was coated with chitosan (Chi) and its derivative, 3,4‐dimethoxy‐benzaldehyde (Chi/DMB). The product was then used as adsorbent for the removal of Cd2+ from aqueous solutions. The presence of imine groups resulting from chemical modification was confirmed using IR, DRS and SEM. The adsorption followed the Langmuir isotherm and could be described by pseudo‐second order kinetics. CONCLUSION: Chi/DMB coated on bentonite increased the accessibility of metal binding sites. The Chi/DMB/bentonite showed no significant pH dependence in the pH range 2–9, but bentonite coated with chitosan revealed very intensive pH dependence, which had a considerable effect on cadmium removal. As expected adsorption of Cd2+ by Chi/bentonite and Chi/DMB/bentonite is dependent on contact time and adsorbent dose. In addition, an EDTA solution is suitable for desorption of cadmium ions, and the reusability of Chi/DMB/bentonite is quite good. © 2012 Society of Chemical Industry  相似文献   
54.
The role of nanoclays and TiO2 nanoparticle loadings were investigated on low density polyethylene crystalline structure, in addition to studying packaging film properties such as barrier, thermal and mechanical properties. The polymer crystal study indicated for the orthorhombic crystal phase and about 20% lower degree of crystallinity for nanocomposites containing more than 2 wt.% TiO2 nanoparticles. Based on the X-ray diffraction technique, the dispersion of nanoclays was improved to almost good degree of clay exfoliation with the company of 4 wt.% TiO2 nanoparticles. In agreement with XRD results, the TEM morphological studies mainly suggest that TiO2 has a helpful effect on nanoclay exfoliation. The increase in degradation temperature of nanocomposites may be attributed to the formation of inorganic char on polymer melt. The barrier properties of TiO2/clay nanocomposite packaging films depend mainly on nanoclay loading with an unclear trend from TiO2 nanoparticles. The increase in elastic modulus and the yield stress of nanocomposite films showed great effects on film mechanical properties by nanoclays.  相似文献   
55.
An eco-friendly procedure for synthesis of 2-(2-oxo-2H-chromen-4-yl)-3-arylthiazolidin-4-one derivatives by three-component reaction of 2-oxo-2H-chromene-4-carbaldehydes, aromatic amines and thioglycolic acid, with tetramethylbutane-1,4-diammonium acetate as a low-cost ionic liquid catalyst under reflux condition is described. The use of an ionic liquid as a catalyst has the advantages of high yields, short reaction time and environmentally friendly reaction media.  相似文献   
56.
The effects of dynamic vulcanization on properties of poly(vinyl chloride) (PVC)/epoxidized natural rubber (ENR)/(kenaf core powder) composite were studied. Tensile properties indicated that the strength, elongation at break, and Young's modulus of the composites exhibited an increase for samples with dynamic vulcanization. Morphological analysis using scanning electron microscopy showed the interaction between ENR and PVC. There was no bonding between kenaf core powder and the PVC/ENR matrix owing to the different polarity of both components. Filler agglomerates increased, which leads to an increase of filler‐filler interaction and poor dispersion. Furthermore, swelling index indicated that the composite with dynamic vulcanization shows lower absorption of tolune compared with composites without dynamic vulcanization. J. VINYL ADDIT. TECHNOL., 22:206–212, 2016. © 2014 Society of Plastics Engineers  相似文献   
57.
Velayati  Mahin  Sabouri  Zahra  Masoudi  Abdolhossein  Mostafapour  Asma  Khatami  Mehrdad  Darroudi  Majid 《SILICON》2022,14(13):7541-7554
Silicon - In this research, epoxy polyurethane-nano silica nanocomposites have been synthesized using an in-situ method, for which SiO2 nanocomposites had been initially ready in N,...  相似文献   
58.
Preceramic polymer resins are attractive for the 3D printing of net-shaped ceramic components. Recently various processes have been demonstrated for 3D printing of polymer-derived ceramics (PDCs). Ultimately in these processes, the process outcomes strongly depend on the process parameters. In particular, for PDCs the ceramic density, and ceramic yield are affected by the catalyst concentration and cross-linking duration. Here, we use thermal analysis and FTIR to quantify the interrelation of the process parameters on the process outcome for polysilazanes and demonstrate 3D printing of PDC components based on the best-identified process parameters. The results of this work can be used as guidelines for future additive manufacturing of PDCs.  相似文献   
59.
In this paper, an investigation on surface properties of glass micropipettes and their effect on biological applications is reported. Pipettes were pulled under different pulling conditions and the effect of each pulling parameter was analyzed. SEM stereoscopic technique was used to reveal the surface roughness properties of pipette tip and pipette inner wall in 3D. More than 20 pipettes were reconstructed. Pipette heads were split open using focused ion beam (FIB) milling for access to the inner walls. It is found that surface roughness parameters are strongly related on the tip size. Bigger pipettes have higher average surface roughness and lower developed interfacial area ratio. Furthermore, the autocorrelation of roughness model of the inner surface shows that the inner surface does not have any tendency of orientation and is not affected by pulling direction. To investigate the effect of surface roughness properties on biological applications, patch-clamping tests were carried out by conventional and FIB-polished pipettes. The results of the experiments show that polished pipettes make significantly better seals. The results of this work are of important reference value for achieving pipettes with desired surface properties and can be used to explain biological phenomenon such as giga-seal formation.  相似文献   
60.
This research aims to enhance the self‐cleaning properties of fibre‐blended fabric using surface pretreatment prior to the application of titanium dioxide nanoparticles. To this end, the polyester/wool fabric was modified, in that the wool fibres were oxidised with potassium permanganate and the polyester fibres were hydrolysed with lipase before nano processing. Butane tetracarboxylic acid was also used to enhance the adsorption of the nanoparticles and also to stabilise them on the fabric surface. The self‐cleaning properties of the fabric were examined through staining of the fabric with CI Basic Blue 9 and then discolouring by exposing to ultraviolet and daylight irradiation. Some other properties of the treated fabrics, such as water drop absorption, crease recovery angle and bending were investigated and are discussed in detail. The colour changes of different samples indicated an appropriate discoloration on the titanium dioxide‐treated fabrics after ultraviolet and daylight irradiation. Overall, the surface pretreatment of the wool and polyester fibres improved the self‐cleaning properties of the fabric significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号