首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   47篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   339篇
金属工艺   32篇
机械仪表   19篇
建筑科学   23篇
矿业工程   6篇
能源动力   34篇
轻工业   54篇
无线电   46篇
一般工业技术   131篇
冶金工业   22篇
原子能技术   1篇
自动化技术   167篇
  2024年   5篇
  2023年   13篇
  2022年   92篇
  2021年   113篇
  2020年   26篇
  2019年   23篇
  2018年   45篇
  2017年   38篇
  2016年   46篇
  2015年   26篇
  2014年   52篇
  2013年   57篇
  2012年   52篇
  2011年   56篇
  2010年   45篇
  2009年   31篇
  2008年   25篇
  2007年   18篇
  2006年   23篇
  2005年   21篇
  2004年   19篇
  2003年   12篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有876条查询结果,搜索用时 15 毫秒
91.
Effective elastic properties and residual stresses were assessed in directionally solidified ternary eutectic ceramic, Al2O3/YAG/ZrO2, by finite element analyses. A 3D finite element model was generated from a CT scan, representative of the microstructure and with a similar volume fraction. Effective elastic properties were calculated by numerical homogenisation. They highlight a quasi-isotropic behaviour of the ternary eutectic ceramics. Despite the difficulties to measure the strain, the dispersion observed in the results and the limited reliability of the materials properties, the results constitute a step towards a better understanding of the material behaviour. Thermal residual stresses induced by the manufacturing were also evaluated. Tensile residual stresses in yttria-stabilised zirconia and compressive residual stresses in YAG and alumina were highlighted. This evaluation also shed light on the influence of the phase morphology in the microstructure. Indeed, the computed spatial distribution of the residual stresses showed that they are different from one position to another due to the variation in phase morphology and also to material properties variability. Therefore, it is important when numerically assessing the thermomechanical properties to take into account the microstructure morphology as well as the variability of material properties.  相似文献   
92.
Neural Computing and Applications - The paper is devoted to the problem of a neural network-based robust simultaneous actuator and sensor faults estimator design for the purpose of the fault...  相似文献   
93.
We investigate the challenges of building an end-to-end cloud pipeline for real-time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real-time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high-definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end-to-end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system.  相似文献   
94.
This paper presents a validation of the thermo-radiative model SOLENE and its application for analysing the street canyon energy balance. The validation data were selected from the temperature and radiation measurements obtained during the JAPEX campaign, previously described by Idczak et al. [16]: a set of four lines of steel containers buildings composing three parallel street canyons at an approximate 1:5 scale. Reference weather data and micrometeorological conditions within the canyon were measured. Numerical simulations were carried out using the meteorological measurements as model inputs. The simulated surface temperatures and radiation fluxes are compared with the measurements for a full week period, with a focus on a day with clear sky conditions. The street canyon energy balance analysis demonstrates that the most energetic surface was the street ground due to its thick surface layer of tar-coated gravels while the walls had a low heat capacity. The thermal radiation balance was negative for all canyon surfaces. The sensible heat was transferred mainly from the canyon surfaces to the ambient air, but also from the air to the ground in the morning. The effective albedo of the canyon had a diurnal value of 0.20–0.25, but dropped to 0.10 in the afternoon when the ground strongly transformed the direct and reflected solar radiation into sensible heat. This narrow street configuration enhanced solar radiation absorption and longwave radiation trapping.  相似文献   
95.
96.
Dual-energy X-ray imaging has a vast range of application in security. Luggage inspection is an essential process for an airplane or court house security as well as securing mass events. An image of a content of some package may help to figure out if there is any dangerous object inside and avoid possibly threatening situation. As the raw X-ray images are not always easy to analyze and interpret, some image processing methods like an object detection, a frequency resolution increase or a pseudocoloring are being used. Since color can be a powerful tool to improve the usefulness of an information display, we propose pseudocoloring improvement by modifying material-based approach with edge detection to fill and sharpen color layers over the image making it easier to read and analyze. We demonstrate the effectiveness of the methods using real data, acquired from a professional dual-energy X-ray scanner.  相似文献   
97.
For the first time, application of a membrane composed of gold nanoparticles decorated with complexing ligand for potentiometric sensing is shown. Gold nanoparticles drop cast from a solution form a porous structure on a substrate electrode surface. Sample cations can penetrate the gold nanoparticles layer and interact with ligand acting as a charged ionophore, resulting in Nernstian potentiometric responses. Anchoring of complexing ligand on the gold surface abolishes the necessity of ionophore application. Moreover, it opens the possibility of preparation of potentiometric sensors using chelators of significantly different selectivity patterns further enhanced by the absence of polymeric membrane matrix. This was clearly seen, for example, for gold nanoparticles stabilizing the applied ligand-dithizone-thiol conformation leading to a high potentiometric selectivity toward copper ions, much higher than that of ionophores typically used to induce selectivity for polymeric ion-selective membranes.  相似文献   
98.
Journal of Materials Science - The superionic α???β phase transition in Cu1.96Se thermoelectric material is investigated by means of thermal analysis (DSC) and...  相似文献   
99.
Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) co‐doped with the rare earth ions Gd3+ and Er3+/Yb3+/Eu3+ are synthesized and dispersed in water. An efficient up‐ and downconverted photoluminescence from the rare‐earth ions (Er3+ and Yb3+ or Eu3+) doped into fluoride nanomatrix allows optical imaging modality for the nanoprobes. Upconversion nanophosphors (UCNPs) show nearly quadratic dependence of the photoluminescence intensity on the excitation light power, confirming a two‐photon induced process and allowing two‐photon imaging with UCNPs with low power continuous wave laser diodes due to the sequential nature of the two‐photon process. Furthermore, both UCNPs and downconversion nanophosphors (DCNPs) are modified with biorecognition biomolecules such as anti‐claudin‐4 and anti‐mesothelin, and show in vitro targeted delivery to cancer cells using confocal microscopy. The possibility of using nanoprobes for optical imaging in vivo is also demonstrated. It is also shown that Gd3+ co‐doped within the nanophosphors imparts strong T1 (Spin‐lattice relaxation time) and T2 (spin‐spin relaxation time) for high contrast MR imaging. Thus, nanoprobes based on fluoride nanophosphors doped with rare earth ions are shown to provide the dual modality of optical and magnetic resonance imaging.  相似文献   
100.
Rapidly quenched amorphous alloys—containing metallic or metalloid elements—are precursors for selective catalysts of many technically important reactions. To increase their activity, various methods of material degradation occurring at the surface and in the bulk of the rapidly quenched alloys have been used for promoting the catalytic performance of such materials. The modifications of the structure, composition, and morphology of the substrate proved to be efficient in transforming inactive metal alloy precursors into active and selective catalysts for hydrogenation, and dehydrogenation of organic compounds, as well as for other processes like steam reforming of methanol. This article presents several examples of characterization of such catalysts and discusses their selectivity and activity in a connection with physical and chemical properties of their surfaces. Moreover, it is shown that scanning electron microscopy, Auger electron spectroscopy, scanning Auger microscopy, and energy dispersive spectrometry allowed the local changes occurring during the activation process to be identified and their implications for catalytic function to be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号