首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   51篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   312篇
金属工艺   32篇
机械仪表   19篇
建筑科学   23篇
矿业工程   6篇
能源动力   34篇
轻工业   54篇
无线电   46篇
一般工业技术   134篇
冶金工业   23篇
原子能技术   1篇
自动化技术   168篇
  2024年   5篇
  2023年   7篇
  2022年   69篇
  2021年   114篇
  2020年   27篇
  2019年   24篇
  2018年   45篇
  2017年   39篇
  2016年   46篇
  2015年   26篇
  2014年   52篇
  2013年   58篇
  2012年   52篇
  2011年   57篇
  2010年   45篇
  2009年   31篇
  2008年   25篇
  2007年   18篇
  2006年   23篇
  2005年   21篇
  2004年   19篇
  2003年   12篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1994年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有854条查询结果,搜索用时 15 毫秒
131.
In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.  相似文献   
132.
Nonlinear optical materials are essential in areas such as nanophotonics, optical information processing, and biomedical imaging. However, nanomaterials employed for these diverse applications to date are efficient only for one type of nonlinear optical activity. Herein, the first multimodal nonlinear optically active class of nanomaterials based on lanthanide-doped lithium niobate nanoparticles, which simultaneously exhibit unprecedentedly efficient second and third harmonic generation, as well as up-conversion photoluminescence, is reported. These dielectric nanoparticles retain their high nonlinear optical conversion efficiency both as powder and as aqueous colloidal solution. The high stability also allows for the fabrication of optically active biocompatible micron-sized fibers and polymer-based 3D-printable objects, as well as for fingerprint detection. Finally, the first 8-bit coding platform purely based on multimodal nonlinear optical activity originating from different parametric and nonparametric processes is demonstrated, showcasing the technological potential of these materials for both anti-counterfeiting and advanced optical information processing.  相似文献   
133.
Osteoporosis is a skeletal disease associated with excessive bone turnover. Among the compounds with antiresorptive activity, nitrogen-containing bisphosphonates play the most important role in antiosteoporotic treatment. In previous studies, we obtained two aminomethylidenebisphosphonates—benzene-1,4-bis[aminomethylidene(bisphosphonic)] (WG12399C) acid and naphthalene-1,5-bis[aminomethylidene(bisphosphonic)] (WG12592A) acid—which showed a significant antiproliferative activity toward J774E macrophages, a model of osteoclast precursors. The aim of these studies was to evaluate the antiresorptive activity of these aminobisphosphonates in ovariectomized (OVX) Balb/c mice. The influence of WG12399C and WG12592A administration on bone microstructure and bone strength was studied. Intravenous injections of WG12399C and WG12592A bisphosphonates remarkably prevented OVX-induced bone loss; for example, they sustained bone mineral density at control levels and restored other bone parameters such as trabecular separation. This was accompanied by a remarkable reduction in the number of TRAP-positive cells in bone tissue. However, a significant improvement in the quality of bone structure did not correlate with a parallel increase in bone strength. In ex vivo studies, WG12399C and WG12592A remarkably bisphosphonates reduced osteoclastogenesis and partially inhibited the resorptive activity of mature osteoclasts. Our results show interesting biological activity of two aminobisphosphonates, which may be of interest in the context of antiresorptive therapy.  相似文献   
134.
Gamma rays and electrons with kinetic energy up to 10 MeV are routinely used to sterilize biomaterials. To date, the effects of irradiation upon human acellular dermal matrices (hADMs) remain to be fully elucidated. The optimal irradiation dosage remains a critical parameter affecting the final product structure and, by extension, its therapeutic potential. ADM slides were prepared by various digestion methods. The influence of various doses of radiation sterilization using a high-energy electron beam on the structure of collagen, the formation of free radicals and immune responses to non-irradiated (native) and irradiated hADM was investigated. The study of the structure changes was carried out using the following methods: immunohistology, immunoblotting, and electron paramagnetic resonance (EPR) spectroscopy. It was shown that radiation sterilization did not change the architecture and three-dimensional structure of hADM; however, it significantly influenced the degradation of collagen fibers and induced the production of free radicals in a dose-dependent manner. More importantly, the observed effects did not disrupt the therapeutic potential of the new transplants. Therefore, radiation sterilization at a dose of 35kGy can ensure high sterility of the dressing while maintaining its therapeutic potential.  相似文献   
135.
For the first time, application of a membrane composed of gold nanoparticles decorated with complexing ligand for potentiometric sensing is shown. Gold nanoparticles drop cast from a solution form a porous structure on a substrate electrode surface. Sample cations can penetrate the gold nanoparticles layer and interact with ligand acting as a charged ionophore, resulting in Nernstian potentiometric responses. Anchoring of complexing ligand on the gold surface abolishes the necessity of ionophore application. Moreover, it opens the possibility of preparation of potentiometric sensors using chelators of significantly different selectivity patterns further enhanced by the absence of polymeric membrane matrix. This was clearly seen, for example, for gold nanoparticles stabilizing the applied ligand-dithizone-thiol conformation leading to a high potentiometric selectivity toward copper ions, much higher than that of ionophores typically used to induce selectivity for polymeric ion-selective membranes.  相似文献   
136.
The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants.  相似文献   
137.
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(?) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(?) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(?), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.  相似文献   
138.
The formation of metal-encapsulated carbon nanomaterials by using metallic catalysts (iron, cobalt, and nickel) has been studied. Moreover, these materials were coated with silica surface modified by (3-Aminopropyl)-trimethoxysilane (APTS). Each intermediate structure was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface morphology of silica-coated carbon nanomaterials was analyzed by scanning electron microscopy (SEM). The modified, APTS–silica surface was additionally characterized by Fourier transform infrared spectroscopy (FT-IR), elemental (EA), and thermogravimetric analysis (TGA).  相似文献   
139.
140.
The technological problems occurring in the co-firing of biomass and brown coal (lignite) prompted this research project. During the fuel preparation, accidental self-ignition and explosions were several times reported by power plants operators. The aim of this study was to evaluate brown coal, sunflower husks and sunflower husk pellets as fuels for co-firing in energetic boilers. Sunflower husk had a lower ash content and calorific value than the pellets. The range of the combustion temperatures of the biomass (200–300 °C) was narrower than that of brown coal (200–800 °C). The formation of highly alkaline ash from the biomass resulted in the formation in boiler of agglomerates of ash. The elemental composition, thermogravimetric and biological analyses suggested that the pellets contained synthetic additives difficult to identify. The biological method was proposed for evaluating biomass additives. The use of additional agents in the pelletizing process may influence on the combustion parameters. Mixing biomass with brown coal may occasionally result in self-ignition in the logistic chain. Plastic additives and biological activity may contribute to self-ignition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号