首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5624篇
  免费   339篇
  国内免费   11篇
电工技术   109篇
综合类   9篇
化学工业   1594篇
金属工艺   79篇
机械仪表   167篇
建筑科学   215篇
矿业工程   5篇
能源动力   187篇
轻工业   550篇
水利工程   41篇
石油天然气   23篇
无线电   447篇
一般工业技术   928篇
冶金工业   267篇
原子能技术   31篇
自动化技术   1322篇
  2024年   6篇
  2023年   85篇
  2022年   248篇
  2021年   322篇
  2020年   174篇
  2019年   200篇
  2018年   207篇
  2017年   207篇
  2016年   250篇
  2015年   212篇
  2014年   270篇
  2013年   447篇
  2012年   393篇
  2011年   449篇
  2010年   334篇
  2009年   330篇
  2008年   292篇
  2007年   253篇
  2006年   214篇
  2005年   151篇
  2004年   124篇
  2003年   94篇
  2002年   86篇
  2001年   63篇
  2000年   56篇
  1999年   57篇
  1998年   80篇
  1997年   65篇
  1996年   52篇
  1995年   26篇
  1994年   37篇
  1993年   29篇
  1992年   12篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   6篇
  1987年   11篇
  1985年   12篇
  1984年   8篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   10篇
  1976年   3篇
  1973年   3篇
  1971年   3篇
排序方式: 共有5974条查询结果,搜索用时 15 毫秒
991.
Hydrogen is a potential green energy vector. Since the heating of the reforming processes commonly used for its production is obtained by burning hydrocarbons, it has a substantial CO2 footprint. One of the most critical aspects in the methane steam reforming (MSR) reaction is the heat transfer to the catalytic volume, due to the high heat fluxes required to obtain high methane conversions. Consequently, the reactor has complex geometries, along with the heating medium being characterized by temperatures higher than 1000 °C; expensive construction materials and high reaction volumes are therefore needed, resulting in slow thermal transients. These aspects increase the costs (both operative and fixed) as well as cause a decrease in the whole process efficiency. The heat transfer limitations due to the endothermicity of methane steam reforming reaction could be effectively overcome by microwave (MW) heating. This heating technique, that depends only on the dielectric properties of the materials, can result in an efficient and faster method for transferring heat directly to the catalyst, thus generating the heat directly inside the catalytic volume. In this work, Ni-based catalysts, differing from each other by the Ni loading (7 and 15 wt% with respect to the washcoat) were prepared. The catalysts were characterized by means of several techniques and tested in the MW-assisted methane steam reforming reaction. Furthermore, the energy balance of the entire process was performed to calculate the energy efficiency, making a preliminary evaluation of its feasibility in distributed hydrogen production also possible. The results of the preliminary tests showed that the prepared structured catalysts are very susceptible to the MW radiation, and that in the presence of the MSR reaction, it is possible to make the system reach a temperature of 900 °C. In the same tests, the CH4 conversion showed a good approach to the thermodynamic equilibrium values starting at temperatures of about 800 °C at a value of gas hourly space velocity (GHSV) of about 5000 h?1. The energy efficiency of the lab-scale system, calculated as the ratio among the energy absorbed by the system and the energy supplied by the microwaves, was about 50%. Future studies will deal with the microwave reactor optimization, aiming at the increase of the energy efficiency of the system, as well as to obtain a higher CH4 conversion at lower temperatures and increase the H2 yield and selectivity.  相似文献   
992.
993.
The electrochemical conversion of N2 to NH3 is an interesting research topic as it provided an alternative and energy-saving method compared with the traditional way of NH3 production. Although different materials have been proposed for N2 reduction, the use of defects in oxides was only reported recently and the relevant working mechanism was not fully revealed. In this study, Sr was used as the dopant for LaFeO3 to create oxygen vacancies, forming the Sr-doped LFO (La0.5Sr0.5FeO3-δ) perovskite oxide. The La0.5Sr0.5FeO3-δ ceramic oxide used as a catalyst achieves an NH3 yield of 11.51 μgh?1 mg?1 and the desirable faradic efficiency (F.E.) of 0.54% at ?0.6 V vs reversible hydrogen electrode (RHE), which surpassed that of LaFeO3 nanoparticles. The 15N isotope labeling method was employed to prove the La0.5Sr0.5FeO3-δ catalyst had the function of converting N2 into NH3 under the electrolysis condition. The first principle calculations were used to investigate the mechanism at the atomistic level, revealing that the free energy barriers changed significantly with the introduction of oxygen vacancies that accelerated the overall nitrogen reduction reaction (NRR) procedure.  相似文献   
994.
This work investigates the opportunity of retrofitting existing small-scale gasifiers shifting from combined heat and power (CHP) to hydrogen and biofuels production, using steam and biomass residues (woodchips, vineyard pruning and bark). The experiments were carried out in a batch reactor at 700 °C and 800 °C and at different steam flow (SF) rates (0.04 g/min and 0.20 g/min). The composition of the producer gas is in the range of 46–70 % H2, 9–29 % CO, 12–27 % CO2, and 2–6 % CH4. A producer gas specific production factor of approx. 10 NLpg/gchar can be achieved when the lower SFs are used, which allows to provide 80 % of the hydrogen concentration required for biomethanation and MeOH synthesis. As for FT synthesis, an optimal H2/CO ratio of approx. 2 can be achieved. The results of this work provide further evidence towards the feasibility of hydrogen and biofuels generation from residual biomass through steam gasification.  相似文献   
995.
996.
997.
Water Resources Management - Increasing global trends in time series of annual maximum daily streamflow (AMX) raise the concern that the safety of dams and other sensitive structures is...  相似文献   
998.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
999.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
1000.
This paper adopts a spatial econometric methodology to investigate the relationship between income and direct household emissions in Italy, as posited by the environmental Engel curve. The spatial approach is motivated by an expanding strand of studies that have detected significant spatial interactions in household-polluting activities responsible for the generation of direct household emissions. Our results suggest the presence of significant spatial dependence for household emissions emerging among regions. At the same time, increases in the level of income do not seem to be coupled with a higher demand for environmental quality by Italian households.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号