ISO 9000 is a management standard that provides customers with assurance that their registered suppliers have a consistent quality system to which they adhere. This paper draws on four sources to show how ISO 9000 can lead to performance improvement: 1) theories of induced innovation and improvisation; 2) the literature on ISO 9000; 3) a case study of a telecom company; and 4) a survey of 1,150 North American companies. We find that the extent to which ISO 9000 is associated with performance improvement depends on the level of its assimilation, and the degree to which an organization goes beyond the minimal requirements of the standard. 相似文献
Preventive maintenance (PM) scheduling is a very challenging task in semiconductor manufacturing due to the complexity of highly integrated fab tools and systems, the interdependence between PM tasks, and the balancing of work-in-process (WIP) with demand/throughput requirements. In this paper, we propose a two-level hierarchical modeling framework. At the higher level is a model for long-term planning, and at the lower level is a model for short-term PM scheduling. Solving the lower level problem is the focus of this paper. We develop mixed-integer programming (MIP) models for scheduling all due PM tasks for a group of tools, over a planning horizon. Interdependence among different PM tasks, production planning data such as projected WIP levels, manpower constraints, and associated PM time windows and costs, are incorporated in the model. Results of a simulation study comparing the performance of the model-based PM schedule with that of a baseline reference schedule are also presented. 相似文献
Here, an approach is presented to incorporate graphene nanosheets into a silicone rubber matrix via solid stabilization of oil‐in‐water emulsions. These emulsions can be cured into discrete, graphene‐coated silicone balls or continuous, elastomeric films by controlling the degree of coalescence. The electromechanical properties of the resulting composites as a function of interdiffusion time and graphene loading level are characterized. With conductivities approaching 1 S m?1, elongation to break up to 160%, and a gauge factor of ≈20 in the low‐strain linear regime, small strains such as pulse can be accurately measured. At higher strains, the electromechanical response exhibits a robust exponential dependence, allowing accurate readout for higher strain movements such as chest motion and joint bending. The exponential gauge factor is found to be ≈20, independent of loading level and valid up to 80% strain; this consistent performance is due to the emulsion‐templated microstructure of the composites. The robust behavior may facilitate high‐strain sensing in the nonlinear regime using nanocomposites, where relative resistance change values in excess of 107 enable highly accurate bodily motion monitoring. 相似文献
Various hydrocarbons are efficiently extracted from water by using a new sorbent material based on covalently functionalized magnetic nanoparticles. The functionalization of the magnetite nanoparticles with a self‐assembled monolayer of hexadecylphosphonic acid renders the nanoparticles oleophilic and the magnetic nature of magnetite allows for simple extraction of the hydrocarbon‐soaked sorbent. The sorbent material is capable of extracting single contaminants such as alkanes and aromatics and complex hydrocarbon mixtures such as crude oils in high extraction rates of up to 14 times the sorbent volume. Experimental results are explained by molecular dynamics simulations on the adsorption of single components from a hydrocarbon‐water mixture to the alkylphosphonic acid layer on the nanoparticles. The core–shell sorbent material is highly stable and therefore, reusable over several successive extraction cycles without degradation. The extraction performance is determined at different water temperatures, different water sources, and different magnetic core materials and evaluated compared to heptadecanoic acid functionalized magnetite. The new sorbent material provides the opportunity for an efficient, reliable, inexpensive, and environmental friendly removal of hydrocarbons from water. 相似文献
The implementation challenge for new low-cost low-power wireless modem transceivers has continuously been growing with increased
modem performance, bandwidth, and carrier frequency. Up to now we have been designing transceivers in a way that we are able
to keep the analog (RF) problem domain widely separated from the digital signal processing design. However, with today’s deep
sub-micron technology, analog impairments – “dirt effects” – are reaching a new problem level which requires a paradigm shift
in the design of transceivers. Examples of these impairments are phase noise, non-linearities, I/Q imbalance, ADC impairments,
etc. In the world of “Dirty RF” we assume to design digital signal processing such that we can cope with a new level of impairments,
allowing lee-way in the requirements set on future RF sub-systems. This paper gives an overview of the topic and presents
analytical evaluations of the performance losses due to RF impairments as well as algorithms that allow to live with imperfect
RF by compensating the resulting error effects using digital baseband processing. 相似文献
The performance of polymer:fullerene bulk heterojunction solar cells is heavily influenced by the interpenetrating nanostructure formed by the two semiconductors because the size of the phases, the nature of the interface, and molecular packing affect exciton dissociation, recombination, and charge transport. Here, X‐ray diffraction is used to demonstrate the formation of stable, well‐ordered bimolecular crystals of fullerene intercalated between the side‐chains of the semiconducting polymer poly(2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene. It is shown that fullerene intercalation is general and is likely to occur in blends with both amorphous and semicrystalline polymers when there is enough free volume between the side‐chains to accommodate the fullerene molecule. These findings offer explanations for why luminescence is completely quenched in crystals much larger than exciton diffusion lengths, how the hole mobility of poly(2‐methoxy‐5‐(3′,7′‐dimethyloxy)‐p‐phylene vinylene) increases by over 2 orders of magnitude when blended with fullerene derivatives, and why large‐scale phase separation occurs in some polymer:fullerene blend ratios while thermodynamically stable mixing on the molecular scale occurs for others. Furthermore, it is shown that intercalation of fullerenes between side chains mostly determines the optimum polymer:fullerene blending ratios. These discoveries suggest a method of intentionally designing bimolecular crystals and tuning their properties to create novel materials for photovoltaic and other applications. 相似文献
We have prototyped and have begun to experiment with an extremely flexible ATM cell store. The cell store accommodates 16 K ATM cells and allows complete software control of the buffer management strategy. The prototype was designed to serve as an output port in an experimental ATM switch, but has also been used as a stand-alone component in several research ATM networks. It is envisioned that the cell store will aid in the realization of queueing strategies capable of supporting emerging ATM and IP service models. This paper describes the motivation, background, detailed design, and an application of the ATM cell store 相似文献
Biomass fuelled integrated gasification/gas turbines (BIG/GTs) have been found to be one of the most promising technologies to maximise electricity output in the sugar industry. However, biomass fuels contain alkali metals (Na and K) which may be released during the gasification processes and cause deleterious effects on the downstream hardware (e.g. the blades of gas turbines). Much research has therefore been focused on different kinds of gas cleaning. Most of these projects are using a fluidised bed gasifier and includes extensive gas cleaning which leads to a high capital investment.
Increasing alkali retention/separation during the gasification may lead to improved producer gas quality and reduced costs for gas cleaning. However, very little quantitative information is available about the actual potential of this effect. In the present work, comparative bench-scale tests of bagasse gasification were therefore run in an isothermal fluidised bed gasifier and in a cyclone gasifier to evaluate which gasification process is most attractive as regards alkali retention/separation, and to try to elucidate the mechanisms responsible for the retention.
The alkali retention in the fluidised bed gasifier was found to be in the range of 12–4% whereas in the cyclone gasifier the alkali separation was found to be about 70%. No significant coating of the fluidised bed's bed material particles could be observed. The SEM/EDS and the elemental maps of the bed material show that a non-sticky ash matrix consisting of mainly Si, Al and K were distributed in a solid form separated from the particles of bed material. This indicates the formation of a high temperature melting potassium containing silicate phase, which is continuously scavenged and lost from the bed through elutriation. 相似文献
In this paper, we introduce the LOPOCOS (Low Power Co-synthesis) system, a prototype CAD tool for system level co-design. LOPOCOS targets the design of energy-efficient embedded systems implemented as heterogeneous distributed architectures. In particular, it is designed to solve the specific problems involved in architectures that include dynamic voltage scalable (DVS) processors. The aim of this paper is to demonstrate how LOPOCOS can support the system designer in identifying energy-efficient hardware/software implementations for the desired embedded systems. Hence, highlighting the necessary optimization steps during design space exploration for DVS enable architectures. The optimization steps carried out in LOPOCOS involve component allocation and task/communication mapping as well as scheduling and dynamic voltage scaling. LOPOCOS has the following key features, which contribute to this energy efficiency. During the voltage scaling valuable power profile information of task execution is taken into account, hence, the accuracy of the energy estimation is improved. A combined optimization for scheduling and communication mapping based on genetic algorithm, optimizes simultaneously execution order and communication mapping towards the utilization of the DVS processors and timing behaviour. Furthermore, a separation of task and communication mapping allows a more effective implementation of both task and communication mapping optimizationsteps. Extensive experiments are conducted to demonstrate the efficiency of LOPOCOS. We report up to 38% higher energy reductions compared to previous co-synthesis techniques for DVS systems. The investigations include a real-life example of an optical flow detection algorithm. 相似文献