首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19579篇
  免费   1369篇
  国内免费   24篇
电工技术   134篇
综合类   11篇
化学工业   7276篇
金属工艺   279篇
机械仪表   443篇
建筑科学   618篇
矿业工程   30篇
能源动力   503篇
轻工业   4549篇
水利工程   174篇
石油天然气   100篇
无线电   804篇
一般工业技术   2809篇
冶金工业   1077篇
原子能技术   72篇
自动化技术   2093篇
  2024年   90篇
  2023年   280篇
  2022年   1343篇
  2021年   1505篇
  2020年   659篇
  2019年   704篇
  2018年   781篇
  2017年   819篇
  2016年   824篇
  2015年   652篇
  2014年   864篇
  2013年   1300篇
  2012年   1276篇
  2011年   1399篇
  2010年   1033篇
  2009年   1028篇
  2008年   922篇
  2007年   849篇
  2006年   656篇
  2005年   515篇
  2004年   421篇
  2003年   378篇
  2002年   343篇
  2001年   217篇
  2000年   171篇
  1999年   205篇
  1998年   275篇
  1997年   207篇
  1996年   188篇
  1995年   132篇
  1994年   109篇
  1993年   97篇
  1992年   87篇
  1991年   63篇
  1990年   48篇
  1989年   59篇
  1988年   44篇
  1987年   43篇
  1986年   56篇
  1985年   45篇
  1984年   41篇
  1983年   28篇
  1982年   21篇
  1981年   23篇
  1980年   24篇
  1979年   28篇
  1978年   20篇
  1977年   18篇
  1976年   19篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
In addition to their therapeutic potential in regenerative medicine, human corneal stromal stem cells (CSSCs) could serve as a powerful tool for drug discovery and development. Variations from different donors, their isolation method, and their limited life span in culture hinder the utility of primary human CSSCs. To address these limitations, this study aims to establish and characterize immortalized CSSC lines (imCSSC) generated from primary human CSSCs. Primary CSSCs (pCSSC), isolated from human adult corneoscleral tissue, were transduced with ectopic expression of hTERT, c-MYC, or the large T antigen of the Simian virus 40 (SV40T) to generate imCSSC. Cellular morphology, proliferation capacity, and expression of CSSCs specific surface markers were investigated in all cell lines, including TNFAIP6 gene expression levels in vitro, a known biomarker of in vivo anti-inflammatory efficacy. SV40T-overexpressing imCSSC successfully extended the lifespan of pCSSC while retaining a similar morphology, proliferative capacity, multilineage differentiation potential, and anti-inflammatory properties. The current study serves as a proof-of-concept that immortalization of CSSCs could enable a large-scale source of CSSC for use in regenerative medicine.  相似文献   
52.
Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.  相似文献   
53.
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.  相似文献   
54.
The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8–10 μm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.  相似文献   
55.
Thermosensitive liquid suppositories (LSs) carrying the model antihypertensive drug metoprolol tartrate (MT) were developed and evaluated. The fundamental purpose of this work was to produce, for the first time, liquid MT suppositories based on biodegradable nanoparticles and optimize their rheological and mechanical properties for prospective rectal administration. The nanoparticle system was based on a biodegradable copolymer synthesized by ring opening polymerization (ROP) of glycolide (GL) and L,L-lactide (LLA). Biodegradable nanoparticles loaded with the model drug were produced by the o/o method at the first stage of the investigation. Depending on the concentration of the drug in the sample, from 66 to 91% of MT was released over 12 h, according to first-order kinetics. Then, thermosensitive LSs with MT-loaded biodegradable nanoparticles were obtained by a cold method and their mechanical and rheological properties were evaluated. To adjust the thermogelling and mucoadhesive properties for rectal administration, the amounts of major formulation components such as poloxamers (P407, P188), Tween 80, hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), and sodium alginate were optimized. The in vitro release results revealed that more than 80% of the MT was released after 12 h, following also first-order kinetics. It was discovered that the diffusion process was dominant. The drug release profile was mainly governed by the rheological and mechanical properties of the developed formulation. Such a novel, thermosensitive formulation might be an effective alternative to hypertension treatment, particularly for unconscious patients, patients with mental illnesses, geriatric patients, and children.  相似文献   
56.
Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups—healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.  相似文献   
57.
Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-β-cyclodextrin (SBEβCD) was characterized, and the Hispolon-SBEβCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity. The inclusion complex in the solid=state was confirmed by a Job’s plot analysis, molecular modeling, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The HSC-SL showed no appreciable deviation in size (<150 nm) and polydispersity index (<0.2) and improved drug encapsulation efficiency (>90%) as compared to control hispolon liposomes. Individually incorporated hispolon and SBEβCD in the liposomes (H-CD-SL) was not significant in loading the drug in the liposomes, compared to HSC-SL, as a substantial amount of free drug was separated during dialysis. The HSC-SL formulation showed a sustained release compared to hispolon liposomes (H-SLs) and Hispolon-SBEβCD liposomes (H-CD-SLs). The anticancer activity on melanoma cell lines (B16BL6) of HSC and HSC-SL was higher than in H-CD-SL and hispolon solution. These findings suggest that HSC inclusion in the HSC-SL liposomes stands out as a potential formulation approach for enhancing drug loading, encapsulation, and chemotherapeutic efficiency of hispolon and similar water insoluble drug molecules.  相似文献   
58.
Fused in sarcoma (FUS) is involved in the regulation of RNA and DNA metabolism. FUS participates in the formation of biomolecular condensates driven by phase transition. FUS is prone to self-aggregation and tends to undergo phase transition both with or without nucleic acid polymers. Using dynamic light scattering and fluorescence microscopy, we examined the formation of FUS high-order structures or FUS-rich microphases induced by the presence of RNA, poly(ADP-ribose), ssDNA, or dsDNA and evaluated effects of some nucleic-acid-binding proteins on the phase behavior of FUS–nucleic acid systems. Formation and stability of FUS-rich microphases only partially correlated with FUS’s affinity for a nucleic acid polymer. Some proteins—which directly interact with PAR, RNA, ssDNA, and dsDNA and are possible components of FUS-enriched cellular condensates—disrupted the nucleic-acid-induced assembly of FUS-rich microphases. We found that XRCC1, a DNA repair factor, underwent a microphase separation and formed own microdroplets and coassemblies with FUS in the presence of poly(ADP-ribose). These results probably indicated an important role of nucleic-acid-binding proteins in the regulation of FUS-dependent formation of condensates and imply the possibility of the formation of XRCC1-dependent phase-separated condensates in the cell.  相似文献   
59.
60.
Sumac, Rhus coriaria L., is a Mediterranean plant showing several useful properties, such as antioxidant and neuroprotective effects. Currently, there is no evidence about its possible neuroprotective action in Parkinson’s disease (PD). We hypothesized that sumac could modulate mitochondrial functionality in fibroblasts of familial early-onset PD patients showing PARK2 mutations. Sumac extract volatile profile, polyphenolic content and antioxidant activity have been previously characterized. We evaluated ROS and ATP levels on sumac-treated patients’ and healthy control fibroblasts. In PD fibroblasts, all treatments were effective in reducing H2O2 levels, while patients’ ATP content was modulated differently, probably due to the varying mutations in the PARK2 gene found in individual patients which are also involved in different mitochondrial phenotypes. We also investigated the effect of sumac extract on THP-1-differentiated macrophages, which show different embryogenic origin with respect to fibroblasts. In THP-1 macrophages, sumac treatment determined a reduction in H2O2 levels and an increase in the mitochondrial ATP content in M1, assuming that sumac could polarize the M1 to M2 phenotype, as demonstrated with other food-derived compounds rich in polyphenols. In conclusion, Rhus coriaria L. extracts could represent a potential nutraceutical approach to PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号