首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53157篇
  免费   13716篇
  国内免费   10篇
电工技术   823篇
综合类   8篇
化学工业   22265篇
金属工艺   464篇
机械仪表   1005篇
建筑科学   2183篇
矿业工程   22篇
能源动力   1175篇
轻工业   10336篇
水利工程   395篇
石油天然气   115篇
无线电   7320篇
一般工业技术   13211篇
冶金工业   1529篇
原子能技术   55篇
自动化技术   5977篇
  2024年   42篇
  2023年   202篇
  2022年   1018篇
  2021年   1292篇
  2020年   1851篇
  2019年   3583篇
  2018年   3561篇
  2017年   3882篇
  2016年   4395篇
  2015年   4340篇
  2014年   4432篇
  2013年   5911篇
  2012年   3574篇
  2011年   3380篇
  2010年   3390篇
  2009年   3220篇
  2008年   2748篇
  2007年   2534篇
  2006年   2128篇
  2005年   1751篇
  2004年   1649篇
  2003年   1614篇
  2002年   1512篇
  2001年   1260篇
  2000年   1199篇
  1999年   615篇
  1998年   269篇
  1997年   240篇
  1996年   154篇
  1995年   119篇
  1994年   123篇
  1993年   107篇
  1992年   89篇
  1991年   77篇
  1990年   60篇
  1989年   48篇
  1988年   49篇
  1987年   48篇
  1986年   60篇
  1985年   48篇
  1984年   45篇
  1983年   30篇
  1982年   20篇
  1981年   25篇
  1980年   34篇
  1979年   25篇
  1978年   27篇
  1977年   22篇
  1976年   24篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The goals of the present study are to establish an in vitro co‐culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well‐defined silk protein biomaterials in 2D and 3D formats in combination with human cells. Parathyroid hormone (PTH) and glucose‐dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on human mesenchymal stem cells (hMSCs). The cell‐modified biomaterial surfaces are reconstructed from scanning electron microscopy images into 3D models for quantitative measurement of surface characteristics. Increased calcium deposition and surface roughness are found in 3D surface models of silk protein films remodeled by co‐cultures containing tethered PTH, and decreased surface roughness is found for the films remodeled by tethered GIP co‐cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast‐osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast‐osteoclast interactions are mimicked for a better understanding of bone remodeling.  相似文献   
992.
Indium‐doped tin oxide free electrochromic devices are prepared by coating electrochromic polymers onto polyethylene terephthalate substrates encompassing two different silver grids as electrodes. One design comprises a flexoprinted highly conductive silver grid electrode, yielding electrochromic devices with a response time of 2 s for an optical contrast of 27%. The other design utilizes an embedded silver grid electrode whereupon response times of 0.5 s for a 30% optical contrast are realized when oxidizing the device. A commercially available conductive poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate acid) formulation (PEDOT:PSS) is coated onto the silver grids as a charge balancing polymer, and is in this setting found to be superior to a polypyrrole previously employed in electrochromic devices. In addition, the PEDOT:PSS layer increases the conductivity in the hexagonal grid structure.  相似文献   
993.
Self‐powered nanosensors and nanosystems have attracted significant attention in the past decades and have gradually become the most desirable and promising prototype for environmental protection/detection because no battery is needed to power the device. Therefore, in this paper a design is proposed for a self‐powered photodetector based on triboelectric nanogenerator (TENG) configuration. 3D dendritic TiO2 nanostructures are synthesized as the built‐in UV photodetector as well as the contact material of the TENG. The cost‐effective, robust, and easily fabricated TENG‐based photodetector presents superior photoresponse characteristics, which include an excellent responsivity over 280 A W?1, rapid rise time (18 ms) and decay time (31 ms), and a wide detection range of light intensity from 20 μW cm?2 to 7 mW cm?2. In the last part of the paper, a stand‐alone and self‐powered environmental sensing device is developed by applying poly(methyl methacrylate) (PMMA) substrates and springs to assemble the TENG‐based photodetector. These results indicate that the new prototype sensing device based on the TENG configuration shows great potential as a self‐powered photodetector.  相似文献   
994.
Deep‐blue fluorescent compounds are particularly important in organic light‐emitting devices (OLEDs). A donor–accepotor (DA)‐type blue‐emitting compound, 1‐(10‐(4‐methoxyphenyl)anthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)benzene ( BD3 ), is synthesized, and for comparison, a nonDA‐type compound, 1,4‐bis(10‐phenylanthracene‐9‐yl)benzene ( BD1 ) and a weak DA‐type compound, 1‐(10‐phenylanthracen‐9‐yl)‐4‐(10‐(4‐cyanophenyl)anthracen‐9‐yl)‐benzene ( BD2 ), are also synthesized. The twisted conformations of the two anthracene units in the compounds, confirmed by single crystal X‐ray analysis, effectively prevent π‐conjugation, and the compound shows deep‐blue photoluminescence (PL) with a high PL quantum efficiency, almost independent of the solvent polarity, resulting from the absence of an intramolecular charge transfer state. The DA‐type molecule BD3 in a non‐doped device exhibits a maximum external quantum efficiency (EQE) of 4.2% with a slight roll‐off, indicating good charge balance due to the DA‐type molecular design. In the doped device with 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP) host, the BD3 exhibits higher EQE than 10% with Commission International de L'Eclairge (CIE) coordinates of (0.15, 0.06) and a narrow full‐width at half‐maximum of 45 nm, which is close to the CIE of the high definition television standard blue.  相似文献   
995.
Highly fluorescent excited‐state charge‐transfer complexes (exciplexes) formed at the interfacial region between a polymeric donor matrix, here, poly(N‐vinylcarbazole), and embedded nanostructured acceptors are characterized for their photophysical properties. Exciplex‐to‐exciton emission switching is observed after solvent vapor annealing (SVA) due to the size evolution of the nanostructures beyond the exciton diffusion length. Color‐tunable exiplex emission (sky blue, green, and orange) is demonstrated for three different nanostructured acceptors with the same HOMO–LUMO gap (i.e., the same blue excitonic emission) but with different electron affinity. White‐emitting poly(N‐vinylcarbazole) film is also fabricated, simply by incorporating mixed supramolecular acceptors, which provide independent exciplex emissions. This study presents important insights into the excited‐state intermolecular interaction at the well‐defined nanoscale interface and suggests an efficient way to obtain multicolored exciplex emissions.  相似文献   
996.
Solution‐processed small‐molecule bulk heterojunction (BHJ) ambipolar organic thin‐film transistors are fabricated based on a combination of [2‐phenylbenzo[d,d']thieno[3,2‐b;4,5‐b']dithiophene (P‐BTDT) : 2‐(4‐n‐octylphenyl)benzo[d,d ']thieno[3,2‐b;4,5‐b']dithiophene (OP‐BTDT)] and C60. Treating high electrical performance vacuum‐deposited P‐BTDT organic semiconductors with a newly developed solution‐processed organic semiconductor material, OP‐BTDT, in an optimized ratio yields a solution‐processed p‐channel organic semiconductor blend with carrier mobility as high as 0.65 cm2 V?1 s?1. An optimized blending of P‐BTDT:OP‐BTDT with the n‐channel semiconductor, C60, results in a BHJ ambipolar transistor with balanced carrier mobilities for holes and electrons of 0.03 and 0.02 cm2 V?1 s?1, respectively. Furthermore, a complementary‐like inverter composed of two ambipolar thin‐film transistors is demonstrated, which achieves a gain of 115.  相似文献   
997.
A wide variety of environmental factors including physical and biochemical signals are responsible for stem cell behavior and function. In particular, matrix elasticity and cell shape have been shown to determine stem cell function, yet little is known about the interplay between how these physical cues control cell differentiation. For the first time, by using ultraviolet (UV) lithography to pattern poly(ethylene) glycol (PEG) hydrogels, it is possible to manufacture microenvironments capable of parsing the effects of matrix elasticity, cell shape, and cell size in order to explore the relationship between matrix elasticity and cell shape in mesenchymal stem cell (MSC) lineage commitment. These data show that cells cultured on 1000 μm2 circles, squares, and rectangles are primarily adipogenic lineage regardless of matrix elasticity, while cells cultured on 2500 and 5000 μm2 shapes more heavily depend on shape and elasticity for lineage specification. It is further characterized how modifying the cell cytoskeleton through pharmacological inhibitors can modify cell behavior. By showing MSC lineage commitment relationships due to physical signals, this study highlights the importance of cell shape and matrix elasticity in further understanding stem cell behavior for future tissue engineering strategies.  相似文献   
998.
Dielectric materials with high electric energy densities and low dielectric losses are of critical importance in a number of applications in modern electronic and electrical power systems. An organic–inorganic 0–3 nanocomposite, in which nanoparticles (0‐dimensional) are embedded in a 3‐dimensionally connected polymer matrix, has the potential to combine the high breakdown strength and low dielectric loss of the polymer with the high dielectric constant of the ceramic fillers, representing a promising approach to realize high energy densities. However, one significant drawback of the composites explored up to now is that the increased dielectric constant of the composites is at the expense of the breakdown strength, limiting the energy density and dielectric reliability. In this study, by expanding the traditional 0–3 nanocomposite approach to a multilayered structure which combines the complementary properties of the constituent layers, one can realize both greater dielectric displacement and a higher breakdown field than that of the polymer matrix. In a typical 3‐layer structure, for example, a central nanocomposite layer of higher breakdown strength is introduced to substantially improve the overall breakdown strength of the multilayer‐structured composite film, and the outer composite layers filled with large amount of high dielectric constant nanofillers can then be polarized up to higher electric fields, hence enhancing the electric displacement. As a result, the topological‐structure modulated nanocomposites, with an optimally tailored nanomorphology and composite structure, yield a discharged energy density of 10 J/cm3 with a dielectric breakdown strength of 450 kV mm–1, much higher than those reported from all earlier studies of nanocomposites.  相似文献   
999.
A novel one‐trough synthesis via an air‐water interface is demonstrated to provide hexagonally packed arrays of densely spaced metallic nanoparticles (NPs). In the synthesis, a mesostructured polyoxometalate (POM)‐silicatropic template (PSS) is first self‐assembled at the air‐water interface; upon UV irradiation, anion exchange cycles enable the free‐floating PSS film to continuously uptake gold precursors from the solution subphase for diffusion‐controlled and POM‐site‐directed photoreduction inside the silica channels. NPs ≈ 2 nm can hence be homogeneously formed inside the silica‐surfactant channels until saturation. As revealed via X‐ray diffraction, small‐angle X‐ray scattering (SAXS), grazing incidence SAXS, and transmission electron microscopy, the Au NPs directed by the PSS template are arrayed into a 2D hexagonal lattice with inter‐channel spacing of 3.2 nm and a mean along‐channel NP spacing of 2.8 nm. This corresponds to an ultra‐high number density (≈1019 NPs cm?3) of narrowly spaced Au NPs in the Au‐NP@PSS composite, leading to 3D densely deployed hot‐spots along and across the mesostructured POM‐silica channels for surface‐enhanced Raman scattering (SERS). Consequently, the Au‐NP@PSS composite exhibits prominent SERS with 4‐mercaptobenzoic acid (4‐MBA) adsorbed onto Au NPs. The best 4‐MBA detection limit is 5 nm , with corresponding SERS enhancement factors above 108.  相似文献   
1000.
The detection of single binding has been a recent trend in sensor research introducing various sensor designs where the active sensing elements are nanoscopic in size. Currently, transport and collection of airborne analytes for gas sensors is either diffusion based or non‐localized and it becomes increasingly unlikely for analytes to interact with sensing structures where the active area is shrunk, trading an increased sensitivity with a slow response time. This report introduces a corona discharge based analyte charging method and an electrodynamic nanolens based analyte concentration concept to effectively transport airborne analytes to sensing points to improve the response time of existing gas sensor designs. Localized collection of analytes over a wide range, including microscopic particles, nanoparticles, and small molecules, is demonstrated. In all cases, the collection rate is several orders of magnitudes higher than in the case where the collection is driven by diffusion. The collection scheme is integrated on an existing SERS (surface‐enhanced Raman spectroscopy) based sensor. In terms of response time, the process is able to detect analytes at 9 ppm (parts per million) within 1 s. As a comparison, 1 h is required to reach the same signal level when diffusion‐only‐transport is used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号