首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2262篇
  免费   171篇
  国内免费   1篇
电工技术   7篇
化学工业   969篇
金属工艺   21篇
机械仪表   41篇
建筑科学   77篇
矿业工程   5篇
能源动力   41篇
轻工业   565篇
水利工程   15篇
石油天然气   7篇
无线电   80篇
一般工业技术   293篇
冶金工业   71篇
原子能技术   6篇
自动化技术   236篇
  2024年   5篇
  2023年   30篇
  2022年   208篇
  2021年   306篇
  2020年   84篇
  2019年   70篇
  2018年   88篇
  2017年   84篇
  2016年   98篇
  2015年   75篇
  2014年   95篇
  2013年   157篇
  2012年   137篇
  2011年   163篇
  2010年   109篇
  2009年   117篇
  2008年   92篇
  2007年   92篇
  2006年   76篇
  2005年   62篇
  2004年   54篇
  2003年   42篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   6篇
  1998年   19篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1977年   4篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有2434条查询结果,搜索用时 234 毫秒
181.
BACKGROUND: Microencapsulation technology promises new applications such as intelligent microstructures, phase change materials and self‐healing composites. Microcapsule synthesis and characterization have been researched extensively; however, the well‐known polymerization between epoxy resins and carboxylic acids has not been used to prepare microcapsules. RESULTS: Microcapsules were prepared by interfacial polymerization of an oil‐in‐water emulsion which contained a commercial epoxy resin and multifunctional carboxylic acids. The microcapsules obtained were characterized using optical microscopy and scanning electron microscopy. Experiments performed at lower stirring rates led to larger microcapsules, in the range 100–400 µm, while higher stirring rates resulted in microcapsules in the range 10–50 µm. CONCLUSIONS: Microcapsules can be prepared by interfacial polymerization of epoxy resins, an extensively studied and widely used class of polymers. By means of NMR characterization we gained insight into the mechanism of polymerization at the interface wherein products coming from the more hindered ring opening as well as from intermolecular transesterification are identified. The presence of a crosslinker affects the morphology of the external microcapsule surface. Copyright © 2008 Society of Chemical Industry  相似文献   
182.
183.
For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.  相似文献   
184.
The human enzymes aldose reductase (AR) and AKR1B10 have been thoroughly explored in terms of their roles in diabetes, inflammatory disorders, and cancer. In this study we identified two new lead compounds, 2‐(3‐(4‐chloro‐3‐nitrobenzyl)‐2,4‐dioxo‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0048, 3 ) and 2‐(2,4‐dioxo‐3‐(2,3,4,5‐tetrabromo‐6‐methoxybenzyl)‐3,4‐dihydropyrimidin‐1(2H)‐yl)acetic acid (JF0049, 4 ), which selectively target these enzymes. Although 3 and 4 share the 3‐benzyluracil‐1‐acetic acid scaffold, they have different substituents in their aryl moieties. Inhibition studies along with thermodynamic and structural characterizations of both enzymes revealed that the chloronitrobenzyl moiety of compound 3 can open the AR specificity pocket but not that of the AKR1B10 cognate. In contrast, the larger atoms at the ortho and/or meta positions of compound 4 prevent the AR specificity pocket from opening due to steric hindrance and provide a tighter fit to the AKR1B10 inhibitor binding pocket, probably enhanced by the displacement of a disordered water molecule trapped in a hydrophobic subpocket, creating an enthalpic signature. Furthermore, this selectivity also occurs in the cell, which enables the development of a more efficient drug design strategy: compound 3 prevents sorbitol accumulation in human retinal ARPE‐19 cells, whereas 4 stops proliferation in human lung cancer NCI‐H460 cells.  相似文献   
185.
The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy.  相似文献   
186.
Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM™. The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.  相似文献   
187.
Multi‐junction solar cells are widely used in high‐concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally resolved DNI. The network of ground‐based sun and sky‐scanning radiometers AErosol RObotic NETwork (AERONET) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
188.
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.  相似文献   
189.
Deciduous climbing plant canopies strategically integrated to building façades can act as dynamic solar shading devices responsive to the seasonal climatic changes. Maximum shading occurs in the summer when the plant is at its peak growth. The shedding of leaves in autumn and winter reduces the shading and allows beneficial solar radiation to be absorbed by the opaque surface of the building façade or penetrated through the windows to the building interior. Although climbing plants have long been used for moderating the microclimate of buildings, there are very few scientific investigations to quantify such effects. This paper reports the findings of a study with specific focus on the shading performance of a vertical deciduous climbing plant canopy. It justifies the selection of Virginia Creeper as an appropriate plant for growth in the UK climate and describes the planting, monitoring and analysis procedures adopted to determine a proposed dynamic Bioshading Coefficient Function – which is used to represent the shading performance of the climbing plant canopy over its annual growing and wilting cycle. A thermal model was developed which identified the key parameters required for establishing the Bioshading Coefficients. Two climbing plant canopies (referred to as Bioshaders) were set up in an existing building in Southeast UK and monitored for 2 years. Measured data were used to calculate a series of daily Bioshading Coefficients which were subsequently applied to establish the Bioshading Coefficient Function. The research also identified issues affecting the indoor environment as a result of the application of Bioshaders.  相似文献   
190.
This article deals with the drug release behavior of theophylline (Th) from poly(vinyl alcohol) (PVA) hydrogels, prepared with magnetic nanoparticles at different particle loadings. These biocompatible matrices were obtained by incorporating different amounts of an aqueous ferrofluid into PVA hydrogels, loaded with Th as a marker for drug‐delivery studies. PVA films with magnetic particles proved to be magnetic field‐responsive materials as the drug release decreased through the application of a relative low and uniform magnetic field for particle concentrations of 0.9% w/w or higher. Moreover, the percentage of restriction of drug release is found to be correlated with particle loading. The in vitro release profiles were analyzed by applying a semiempirical power law to obtain the kinetic parameters. The value of the release exponent was found to be in the range 0.54–0.56 in all experiments, which thus indicates a predominant diffusional mechanism for drug release from these smart magnetic hydrogels. This effect suggests the possibility of modulating the release behavior by controlling the particle content in the preparation of the composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号