首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   171篇
  国内免费   1篇
电工技术   7篇
化学工业   964篇
金属工艺   21篇
机械仪表   41篇
建筑科学   77篇
矿业工程   5篇
能源动力   41篇
轻工业   565篇
水利工程   15篇
石油天然气   7篇
无线电   80篇
一般工业技术   293篇
冶金工业   69篇
原子能技术   6篇
自动化技术   236篇
  2024年   5篇
  2023年   30篇
  2022年   203篇
  2021年   306篇
  2020年   84篇
  2019年   70篇
  2018年   88篇
  2017年   84篇
  2016年   98篇
  2015年   75篇
  2014年   95篇
  2013年   157篇
  2012年   137篇
  2011年   163篇
  2010年   109篇
  2009年   117篇
  2008年   92篇
  2007年   92篇
  2006年   76篇
  2005年   62篇
  2004年   54篇
  2003年   42篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   6篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有2427条查询结果,搜索用时 31 毫秒
91.
A study on the activity of selenocarbamates as a novel chemotype acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. Undergoing CA-mediated hydrolysis, selenocarbamates release selenolates behaving as zinc binding groups and effectively inhibiting CAs. A series of selenocarbamates characterised by high molecular diversity and complexity have been studied against different human CA isoforms such as hCA I, II, IX and XII. Selenocarbamates behave as masked selenols with potential biological applications as prodrugs for CAs inhibition-based strategies. X-ray studies provided insights into the binding mode of this novel class of CA inhibitors.  相似文献   
92.
93.
94.
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.  相似文献   
95.
Ovarian cancer is the most common cause of gynecological cancer death. Cancer Stem Cells (CSCs) characterized by drug transporters and extracellular matrix (ECM) molecules expression are responsible for drug resistance development. The goal of our study was to examine the role of aldehyde dehydrogenase 1A1 (ALDH1A1) expression in paclitaxel (PAC) and topotecan (TOP) resistant ovarian cancer cell lines. In both cell lines, we knocked out the ALDH1A1 gene using the CRISPR/Cas9 technique. Additionally, we derived an ALDH1A1 positive TOP-resistant cell line with ALDH1A1 expression in all cells via clonal selection. The effect of ALDH1A1 gene knockout or clonal selection on the expression of ALDH1A1, drug transporters (P-gp and BCRP), and ECM (COL3A1) was determined by Q-PCR, Western blot and immunofluorescence. Using MTT assay, we compared drug resistance in two-dimensional (2D) and three-dimensional (3D) cell culture conditions. We did not observe any effect of ALDH1A1 gene knockout on MDR1/P-gp expression and drug resistance in the PAC-resistant cell line. The knockout of ALDH1A1 in the TOP-resistant cell line resulted in a moderate decrease of BCRP and COL3A1 expression and weakened TOP resistance. The clonal selection of ALDH1A1 cells resulted in very strong downregulation of BCPR and COL3A1 expression and overexpression of MDR1/P-gp. This finally resulted in decreased resistance to TOP but increased resistance to PAC. All spheroids were more resistant than cells growing as monolayers, but the resistance mechanism differs. The spheroids’ resistance may result from the presence of cell zones with different proliferation paces, the density of the spheroid, ECM expression, and drug capacity to diffuse into the spheroid.  相似文献   
96.
Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified three loci associated with both traits. However, the genetic cis-regulation at the protein level associated with SVD has not been studied before. We performed a proteome-wide association study (PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins) and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and multi-trait analysis of GWAS (MTAG)-ICH–SVS from Chung et al. (N = 240,269) were selected. We performed PWAS and then a co-localization analysis with COLOC. The significant and nominal results were validated using a replication dPFC proteome (N = 152). The replicated results (q-value < 0.05) were further investigated for the causality relationship using summary data-based Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS (z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR results for ICA1L indicated a causal association of protein expression levels in the brain with SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein levels in the brain.  相似文献   
97.
The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/− mouse model (hereinafter referred to as ptch+/−), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/−cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/− mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/− mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/− mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.  相似文献   
98.
99.
Some hearing, vestibular, and vision disorders are imputable to voltage-gated Ca2+ channels of the sensory cells. These channels convey a large Ca2+ influx despite extracellular Na+ being 70-fold more concentrated than Ca2+; such high selectivity is lost in low Ca2+, and Na+ can permeate. Since the permeation properties and molecular identity of sensory Ca2+ channels are debated, in this paper, we examine the Na+ current flowing through the L- and R-type Ca2+ channels of labyrinth hair cells. Ion currents and cytosolic free Ca2+ concentrations were simultaneously monitored in whole-cell recording synchronous to fast fluorescence imaging. L-type and R-type channels were present with different densities at selected sites. In 10 nM Ca2+, the activation and deactivation time constants of the L-type Na+ current were accelerated and its maximal amplitude increased by 6-fold compared to physiological Ca2+. The deactivation of the R-type Na+ current was not accelerated, and its current amplitude increased by 2.3-fold in low Ca2+; moreover, it was partially blocked by nifedipine in a voltage- and time-dependent manner. In conclusion, L channel gating is affected by the ion species permeating the channel, and its selectivity filter binds Ca2+ more strongly than that of R channel; furthermore, external Ca2+ prevents nifedipine from perturbing the R selectivity filter.  相似文献   
100.
Pain transmission at the spinal cord is modulated by noradrenaline (NA)-mediated actions that arise from supraspinal areas. We studied the locus coeruleus (LC) to evaluate the expression of the cathecolamine-synthetizing enzyme tyrosine hydroxylase (TH) and search for local oxidative stress and possible consequences in descending pain modulation in a model of hydrocephalus, a disease characterized by enlargement of the cerebral ventricular system usually due to the obstruction of cerebrospinal fluid flow. Four weeks after kaolin injection into the cisterna magna, immunodetection of the catecholamine-synthetizing enzymes TH and dopamine-β-hydroxylase (DBH) was performed in the LC and spinal cord. Colocalization of the oxidative stress marker 8-OHdG (8-hydroxyguanosine; 8-OHdG), with TH in the LC was performed. Formalin was injected in the hindpaw both for behavioral nociceptive evaluation and the immunodetection of Fos expression in the spinal cord. Hydrocephalic rats presented with a higher expression of TH at the LC, of TH and DBH at the spinal dorsal horn along with decreased nociceptive behavioral responses in the second (inflammatory) phase of the formalin test, and formalin-evoked Fos expression at the spinal dorsal horn. The expression of 8-OHdG was increased in the LC neurons, with higher co-localization in TH-immunoreactive neurons. Collectively, the results indicate increased noradrenergic expression at the LC during hydrocephalus. The strong oxidative stress damage at the LC neurons may lead to local neuroprotective-mediated increases in NA levels. The increased expression of catecholamine-synthetizing enzymes along with the decreased nociception-induced neuronal activation of dorsal horn neurons and behavioral pain signs may indicate that hydrocephalus is associated with alterations in descending pain modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号