首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2375篇
  免费   142篇
  国内免费   1篇
电工技术   7篇
化学工业   1055篇
金属工艺   21篇
机械仪表   41篇
建筑科学   77篇
矿业工程   5篇
能源动力   41篇
轻工业   565篇
水利工程   15篇
石油天然气   7篇
无线电   80篇
一般工业技术   293篇
冶金工业   69篇
原子能技术   6篇
自动化技术   236篇
  2024年   5篇
  2023年   48篇
  2022年   276篇
  2021年   306篇
  2020年   84篇
  2019年   70篇
  2018年   88篇
  2017年   84篇
  2016年   98篇
  2015年   75篇
  2014年   95篇
  2013年   157篇
  2012年   137篇
  2011年   163篇
  2010年   109篇
  2009年   117篇
  2008年   92篇
  2007年   92篇
  2006年   76篇
  2005年   62篇
  2004年   54篇
  2003年   42篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   6篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
排序方式: 共有2518条查询结果,搜索用时 15 毫秒
21.
This paper proposes a methodology to simulate temperature dependent timing in standard cell designs. Temperature dependent timing characteristics are derived from standard delay format (SDF) files that are created by synthesis tools automatically based on SPICE characterizations. In addition, a fast calculation of temperatures using the equivalent Foster RC network is presented. A case study is also presented in this paper where the temperature dependent frequency variation of a ring oscillator is simulated demonstrating the necessity of temperature dependent timing simulations. An adaptively refineable partitioning method for simulating standard cell designs logi-thermally is proposed as well. This paper also introduces recent enhancements in the CellTherm logi-thermal simulator developed in the Department of Electron Devices, BME, Hungary. Finally, the simulation results are compared and verified with the SPICE compatible ELDO analog simulator from Mentor Graphics.  相似文献   
22.
Seed meals of three cowpea (Vigna unguiculata) cultivars, grown in pots containing sulphur-deficient soil supplemented with 0, 0.2, 0.6, 1.8, 5, 15 and 45 parts/106 sulphate-S levels in the soil solution, were examined for total nitrogen, total sulphur and sulpho-amino acid contents. The sulphur content and the ratio of sulphur to nitrogen were found to increase with the increasing level of sulphate-S fertilisation up to ca 5 parts/106. Compared with the control the sulpho-amino acid content in seeds of cowpea TVu 76 increased with S-supplementation up to 5 parts/106 and that of cowpea Sitao Pole increased with S up to 1.8 parts/106. Similar levels (7 and 2 parts/106 respectively) of sulphate-S were required in the soil solution to obtain 95% of the maximum yields of cowpea seeds. The content of sulpho-amino acids in the seeds from 5 parts/106 treatments were similar to those reported for cowpeas grown under field conditions at IITA and elsewhere with adequate levels of soil sulphur for maximum yield.  相似文献   
23.
Multi‐junction solar cells are widely used in high‐concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally resolved DNI. The network of ground‐based sun and sky‐scanning radiometers AErosol RObotic NETwork (AERONET) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
24.
Efficiently harvesting solar energy for photocatalysis remains very challenging. Rational design of architectures by combining nanocomponents of radically different properties, for example, plasmonic, upconversion, and photocatalytic properties, offers a promising route to improve solar energy utilization. Herein, the synthesis of novel, plasmonic Au nanoparticle decorated NaYF4:Yb3+, Er3+, Tm3+‐core@porous‐TiO2‐shell microspheres is reported. They exhibit high surface area, good stability, broadband absorption from ultraviolet to near infrared, and excellent photocatalytic activity, significantly better than the benchmark P25 TiO2. The enhanced activity is attributed to synergistic effects from nanocomponents arranged into the nanostructured architecture in such a way that favors the efficient charge/energy transfer among nanocomponents and largely reduced charge recombination. Optical and energy‐transfer properties are modeled theoretically to support our interpretations of catalytic mechanisms. In addition to yielding novel materials and interesting properties, the current work provides physical insights that can contribute to the future development of plasmon‐enhanced broadband catalysts.  相似文献   
25.
In today's digital electronic integrated circuits device heating is one of the most critical issues. Overheating can cause failures in functionality and device malfunction. In certain circumstances overheating of ICs can cause physical destruction of the device itself. This paper introduces a solution to determine cell and gate heating curves across the standard cell IC's surface. The presented methodology and toolset is tightly integrated into standardized logic simulator engines thus providing digital circuit designers a low-level, cell-resolution temperature distribution map during logic simulations. Actual temperatures of each consisting cell of the design can be monitored throughout the whole logic simulation. By being able to monitor temperatures of digital cells during initial simulations, it allows us to detect hot-spots and overheating caused malfunctions far before manufacture. By using the spatial location and temperature magnitude of hot-spots acquired from the presented methodology, place and route (P&R) tools can be driven to change cell placement and routing in order to avoid heating caused failures. Additionally, cooling solutions can be developed using the simulated temperature maps of the IC's surface. This paper also presents various aspects of power characterization methods which were used throughout the experiments.  相似文献   
26.
Low-dimensional structures have been shown to be promising candidates for enhancing the thermoelectric properties of semiconductors, paving the way for integration of thermoelectric generators into silicon microtechnology. With this aim, dense arrays of well-oriented and size-controlled silicon nanowires (Si NWs) obtained by the chemical vapor deposition (CVD)-vapor–liquid–solid (VLS) mechanism have been implemented into microfabricated structures to develop planar unileg thermoelectric microgenerators (μTEGs). Different low-thermal-mass suspended structures have been designed and microfabricated on silicon-on-insulator (SOI) substrates to operate as microthermoelements using p-type Si NW arrays as the thermoelectric material. To obtain nanowire arrays with effective lengths larger than normally attained by the VLS technique, structures composed of multiple ordered arrays consecutively bridged by transversal microspacers have been fabricated. The successive linkage of multiple Si NW arrays enabled the development of larger temperature differences while preserving good electrical contact. This gives rise to small internal thermoelement resistances, enhancing the performance of the devices as energy harvesters.  相似文献   
27.
New generations of video compression algorithms, such as those included in the under development High Efficiency Video Coding (HEVC) standard, provide substantially higher compression compared to their ancestors. The gain is achieved by improved prediction of pixels, both within a frame and between frames. Novel coding tools that contribute to the gain provide highly uncorrelated prediction residuals for which classical frequency decomposition methods, such as the discrete cosine transform, may not be able to supply a compact representation with few significant coefficients. To further increase the compression gains, this paper proposes transform skip modes which allow skipping one or both 1-D constituent transforms (i.e., vertical and horizontal), which is more suitable for sparse residuals. The proposed transform skip mode is tested in the HEVC codec and is able to provide bitrate reductions of up to 10% at the same objective quality when compared with the application of 2-D block transforms only. Moreover, the proposed transform skip mode outperforms the full transform skip currently investigated for possible adoption in the HEVC standard.  相似文献   
28.
Organic solar cells made using a blend of DPM12 and P3HT are studied. The results show that higher Voc can be obtained when using DPM12 in comparison to the usual mono‐substituted PCBM electron acceptor. Moreover, better device performances are also registered when the cells are irradiated with sun‐simulated light of 10–50 mW cm?2 intensity. Electrochemical and time‐resolved spectroscopic measurements are compared for both devices and a 100‐mV shift in the density of states (DOS) is observed for DPM12/P3HT devices with respect to PCBM/P3HT solar cells and slow polaron‐recombination dynamics are found for the DPM12/P3HT devices. These observations can be directly correlated with the observed increase in Voc, which is in contrast with previous results that correlated the higher Voc with different ideality factors obtained using dark‐diode measurements. The origin for the shift in the DOS can be correlated to the crystallinity of the blend that is influenced by the properties of the included fullerene.  相似文献   
29.
30.
Assembling arrays of ordered nanowires is a key objective for many of their potential applications. However, a lack of understanding and control of the nanowires' growth mechanisms limits their thorough development. In this work, an appealing new path towards self-organized epitaxial nanowire networks produced by high-throughput solution methods is reported. Two requisites are identified to generate the nanowires: a thermodynamic driving force for an unrestricted elongated equilibrium island shape, and a very fast effective coarsening rate. These requirements are met in anisotropically strained Ce(1-x)Gd(x)O(2-y) nanowires with the (011) orientation grown on the (001) surface of LaAlO(3) substrates. Nanowires with aspect ratios above ≈100 oriented along two mutually orthogonal axes are obtained leading to labyrinthine networks. A very fast effective nanowire growth rate (≈60 nm min(-1)) for ex-situ thermally annealed nanostructures derives from simultaneous kinetic processes occurring in a branched network. Ostwald ripening and anisotropic dynamic coalescence, both promoted by strain-driven attractive nanowire interaction, and rapid recrystallization, enabled by fast atomic diffusion associated with a high concentration of oxygen vacancies, contribute to such an effective growth rate. This bottom-up approach to self-organized nanowire growth has a wide potential for many materials and functionalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号