首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   93篇
  国内免费   4篇
电工技术   11篇
化学工业   430篇
金属工艺   27篇
机械仪表   39篇
建筑科学   31篇
能源动力   75篇
轻工业   189篇
水利工程   26篇
石油天然气   12篇
无线电   87篇
一般工业技术   182篇
冶金工业   22篇
原子能技术   5篇
自动化技术   173篇
  2024年   5篇
  2023年   26篇
  2022年   61篇
  2021年   118篇
  2020年   106篇
  2019年   89篇
  2018年   116篇
  2017年   111篇
  2016年   92篇
  2015年   49篇
  2014年   99篇
  2013年   122篇
  2012年   88篇
  2011年   71篇
  2010年   49篇
  2009年   34篇
  2008年   24篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1309条查询结果,搜索用时 15 毫秒
101.
The Journal of Supercomputing - A multimedia-based medical decision-making system is an ultimate requirement in the medical imaging domain. In the healthcare sector, achieving quick and efficient...  相似文献   
102.
Telecommunication Systems - Interference is the main source of capacity limitation in wireless networks. In some medium access technologies in cellular networks, such as OFDMA, the allocation of...  相似文献   
103.
104.
105.
106.
Engineering with Computers - Optimizing the high computational real-world problems is a challenging task that has taken a great deal of efforts in the last decade. The meta-heuristic algorithms...  相似文献   
107.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
108.
Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [99mTc]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [99mTc]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [99mTc]Tc-ZHER2:V2 and [99mTc]Tc-ZHER2:2395. [99mTc]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 ± 2 pM. The renal uptake for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 was 25–30 fold lower when compared with [99mTc]Tc-ZHER2:2395. The uptake in tumour and kidney for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with 99mTc using a GGGC chelator. The new probe, [99mTc]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [99mTc]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.  相似文献   
109.
The accurate prediction of the visual comfort zone in an indoor environment is difficult as it depends on many parameters. This is especially the case for large compact urban areas in which the density and shadow from neighboring buildings can limit the accessible daylighting in indoor spaces. This paper investigates the satisfaction range for illuminance regarding indoor air temperature in office buildings and the significant parameters affecting this range in six office buildings in Tehran, Iran. Lighting comfort has been evaluated by a subjective survey (509 total responses) and field measurement. The questionnaires were filled out in 146 and 109 rooms in summer and winter, respectively. The results show that the illuminance should not be less than 550 lx, while illuminance between 600 and 650 lx provides the highest satisfaction level. The satisfaction with lighting level is affected by individual parameters such as age, type of activity, and environmental parameters such as window orientation, external obscurations, and season. A relationship was observed between lighting level satisfaction and thermal condition acceptance, and the overall comfort depends more on thermal conditions than the lighting level.  相似文献   
110.
Hydrogen storage technology is one of the most challenging issues due to the increasing demand for fossil fuel replacement and the reduction of greenhouse gas emissions. In the current paper, the main aim is one-step and eco-friendly preparation of DyFeO3-ZnO nanocomposites using Barberry fruit extract as natural precursor (with the role of both fuel and capping agent) to compare with various conventional carboxylic acids. To further examine, the effect of different parameters like calcination temperature and the type of the chelating agent was scrutinized to acquire optimum shape, structure, morphology and size of the obtained products. This is the first effort on the investigation of the hydrogen storage capacity of DyFeO3-ZnO nanocomposites in terms of role of morphology. The electrochemical hydrogen storage capacity of obtained DyFeO3-ZnO nanocomposites was studied mediated by chronopotentiometry charge-discharge methods in KOH medium. The synthesis of nanocomposites in the presence of chemical or natural capping agent (carboxylic acids or Barberry fruit extract) led to different morphologies which affects to the electrochemical performance. As a result, the electrode which is provided by plate-like DyFeO3-ZnO nanocomposites performed 600.11 mAh/g discharge capacity compared with other samples. Based on the obtained results, DyFeO3-ZnO nanocomposites can be promising compounds to improve the electrochemical performance of hydrogen storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号