首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198篇
  免费   104篇
  国内免费   4篇
电工技术   11篇
化学工业   428篇
金属工艺   27篇
机械仪表   39篇
建筑科学   31篇
能源动力   75篇
轻工业   189篇
水利工程   25篇
石油天然气   12篇
无线电   87篇
一般工业技术   182篇
冶金工业   22篇
原子能技术   5篇
自动化技术   173篇
  2024年   5篇
  2023年   24篇
  2022年   61篇
  2021年   118篇
  2020年   106篇
  2019年   88篇
  2018年   116篇
  2017年   111篇
  2016年   92篇
  2015年   49篇
  2014年   99篇
  2013年   122篇
  2012年   88篇
  2011年   71篇
  2010年   49篇
  2009年   34篇
  2008年   24篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1306条查询结果,搜索用时 234 毫秒
61.
Feldspar/titanium dioxide/chitosan hybrid, a photoactive biocompatible adsorbent for anionic dyes, was synthesized, characterized, and successfully tested. The adsorbent characterization, pH role, adsorbent dose effect, equilibrium data, kinetic plats, and thermodynamic parameters are reported. The point of zero charge for the hybrid was measured to be 8.3, and the most favorable pH range for the adsorption process was found to be below this pH value. The adsorption equilibrium study demonstrated that the Freundlich model was best fitted to the experimental data. Without UV light exposure, the prepared adsorbent adsorbed 72 mg of Acid Black 1 (AB1)/g of sorbent (86% removal) from a 100‐mL solution with an initial dye concentration of 50 mg/L, whereas UV irradiation resulted in an increase in the elimination of AB1 dye (97% removal). The kinetic data was depicted well by the pseudo‐second‐order model. The thermodynamic parameters indicated that the reaction between the hybrid and the dye was exothermic and also spontaneous at lower temperatures. In the batch desorption process, several aqueous solutions adjusted to different pH values were tested, and the best desorption performance (90% desorption) was achieved at pH 11. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40247.  相似文献   
62.
In this study, rheological, crystal structure, barrier, and mechanical properties of polyamide 6 (PA6), poly(m‐xylene adipamide) (MXD6) and their in situ polymerized nanocomposites with 4 wt % clay were studied. The extent of intercalation and exfoliation as well as type of crystals, crystallinity, and thermal transitions were investigated using X‐ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. Dynamic rheological measurements revealed that incorporation of nanoclay significantly increases complex viscosity of MXD6 nanocomposites at low frequencies, which was related to the formation of a nanoclay network and exchange reaction between MXD6 chains. The comparative study of dynamic characteristics (G′ (ω) and G″ (ω)) for aliphatic and aromatic polyamide nanocomposites with their neat resins as well as the relaxation spectra for both polymer systems confirmed the possibility of the aforementioned phenomena. Although, the crystallinity of MXD6 films was lower as compared to PA6 films, the permeability to oxygen was more than 5 times better for the former. Incorporating 4 wt% clay enhanced the barrier property, tensile modulus, and yield stress of PA6 and MXD6 nanocomposite films in both machine and transverse directions without sacrificing much puncture and tear resistances. The PA6‐based films showed higher tear and puncture strength as compared to MXD6 films. POLYM. ENG. SCI., 54:2617–2631, 2014. © 2013 Society of Plastics Engineers  相似文献   
63.
The development of reliable predictive models for individual cancer cell lines to identify an optimal cancer drug is a crucial step to accelerate personalized medicine, but vast differences in cancer cell lines and drug characteristics make it quite challenging to develop predictive models that result in high predictive power and explain the similarity of cell lines or drugs. Our study proposes a novel network-based methodology that breaks the problem into smaller, more interpretable problems to improve the predictive power of anti-cancer drug responses in cell lines. For the drug-sensitivity study, we used the GDSC database for 915 cell lines and 200 drugs. The theory of optimal mass transport was first used to separately cluster cell lines and drugs, using gene-expression profiles and extensive cheminformatic drug features, represented in a form of data networks. To predict cell-line specific drug responses, random forest regression modeling was separately performed for each cell-line drug cluster pair. Post-modeling biological analysis was further performed to identify potential biological correlates associated with drug responses. The network-based clustering method resulted in 30 distinct cell-line drug cluster pairs. Predictive modeling on each cell-line-drug cluster outperformed alternative computational methods in predicting drug responses. We found that among the four drugs top-ranked with respect to prediction performance, three targeted the PI3K/mTOR signaling pathway. Predictive modeling on clustered subsets of cell lines and drugs improved the prediction accuracy of cell-line specific drug responses. Post-modeling analysis identified plausible biological processes associated with drug responses.  相似文献   
64.
65.
66.
67.
ABSTRACT

On 12th November 2017, an earthquake with a magnitude of 7.3 Richter scale in the town of Sarpol-e Zahab took place that caused lots of human casualties and devastation. After the incident, issues related to the probability of an earthquake with equal intensity and extents of similar building destruction were raised in Kermanshah city. Therefore, a seismic microzonation map of Kermanshah city has been prepared based on the geotechnical, geological, and geophysical data, and the data were analysed using Fuzzy analytic hierarchy process (AHP). In the next step, the vulnerability analysis of city buildings was carried out based on the ground-shaking map, vulnerability curves, and statistical data regarding the buildings. The results of the vulnerability rate of residential buildings indicate that 80% of residential buildings would be exposed to vulnerability from low to moderate. However, other buildings would suffer 2% fully destruction (D1), 7% very high destruction (D2) and 11% high destruction (D3), respectively. Finally, according to the obtained results, the proposed model is verified with the help of the data and observations from the Sarpol-e Zahab earthquake, which reveals that the model is in good agreement with the actual earthquake data.  相似文献   
68.
69.
A novel thermosensitive folic acid (FA)-targeted succinylated poly (ethylene-co-vinyl alcohol) (EVOH) (EVOHS-FA) nanocarrier was synthesized for the specific delivery of epirubicin (EPI) to MCF-7 breast cancer cell line. Three different ratios of synthesized EVOH-Suc were reacted with FA. The structure of the desired products (EVOHS40-FA, EVOHS60-FA and EVOHS80-FA) was confirmed by 1H NMR and FTIR techniques. Nanoparticles were obtained by nano-precipitation procedure using DMSO/H2O as solvent/anti-solvent. The particle size, zeta potential, entrapment efficacy and in vitro release profile of the final formulations in different temperatures were measured. The optimized nanoparticles had the particle size of 214 ± 8.5 nm, zeta potential of ?29.6 mV, PDI of 0.198 ± 0.04, and a high encapsulation efficiency that released the drug efficiently within 450 h at the temperature of 40 °C compared to 37 °C. The morphology of nanoparticles was studied by scanning electron microscopy. The in vitro cytotoxicity was evaluated using the MTT assay on MCF-7 cell lines in response to temperatures of 37 and 40 °C. The MTT assay indicated that the targeted nanoparticles carrying EPI were significantly more cytotoxic than the non-targeted nanoparticles and the free drug at 40 °C.  相似文献   
70.
A series of titanium aminotropone complexes bearing a pair of chelating [O–N] ligands have been synthesized and used for polymerization of ethylene successfully. Ethylene polymerization reactions were carried out at different conditions using the prepared catalysts. The activities for ethylene polymerization were significantly dependent on the catalyst structure. The polymerization activity increased with increasing of the both monomer pressure and [MAO]:[Ti] ratio. The highest activity of the catalysts was obtained at about 30–40 °C. It was demonstrated that unlike the high performance Ti–FI catalysts, bis(aminotropone) Ti catalysts do not require the presence of steric bulk in close proximity to the oxygen moiety. Introduction of the bulky alkyl substitution next to the oxygen moiety decreased the activity of the catalysts. Density Functional Theory (DFT) studies reveal that the active species derived from these catalysts normally possess higher electrophilicity nature compared with those produced using bis(phenoxy-imine) Ti catalysts (Ti–FI catalysts). Hydrogen was used as the chain transfer agent. The activities of the catalysts were increased with hydrogen concentration to some extent, but the M v values of the obtained polymers were decreased. Crystallinity and melting point of the obtained polymer were between 42–62% and 102–124 °C, respectively. Higher pressure increased both the crystallinity and the M v values of the resulting polymers. The catalyst 8a also produced PE with almost narrow polydispersities (1.10–2.55) as is typical for single-site catalysts. However, PDI was broadened by time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号