全文获取类型
收费全文 | 83747篇 |
免费 | 963篇 |
国内免费 | 406篇 |
专业分类
电工技术 | 771篇 |
综合类 | 2316篇 |
化学工业 | 11424篇 |
金属工艺 | 4781篇 |
机械仪表 | 3032篇 |
建筑科学 | 2157篇 |
矿业工程 | 562篇 |
能源动力 | 1105篇 |
轻工业 | 3601篇 |
水利工程 | 1269篇 |
石油天然气 | 344篇 |
无线电 | 9233篇 |
一般工业技术 | 16286篇 |
冶金工业 | 2657篇 |
原子能技术 | 256篇 |
自动化技术 | 25322篇 |
出版年
2022年 | 9篇 |
2021年 | 11篇 |
2020年 | 13篇 |
2018年 | 14452篇 |
2017年 | 13381篇 |
2016年 | 9969篇 |
2015年 | 606篇 |
2014年 | 230篇 |
2013年 | 194篇 |
2012年 | 3139篇 |
2011年 | 9413篇 |
2010年 | 8286篇 |
2009年 | 5547篇 |
2008年 | 6769篇 |
2007年 | 7774篇 |
2006年 | 118篇 |
2005年 | 1214篇 |
2004年 | 1125篇 |
2003年 | 1166篇 |
2002年 | 538篇 |
2001年 | 96篇 |
2000年 | 175篇 |
1999年 | 58篇 |
1998年 | 60篇 |
1997年 | 32篇 |
1996年 | 49篇 |
1995年 | 15篇 |
1994年 | 11篇 |
1993年 | 9篇 |
1992年 | 12篇 |
1991年 | 23篇 |
1988年 | 9篇 |
1969年 | 24篇 |
1968年 | 43篇 |
1967年 | 33篇 |
1966年 | 42篇 |
1965年 | 44篇 |
1964年 | 11篇 |
1963年 | 28篇 |
1962年 | 22篇 |
1961年 | 18篇 |
1960年 | 30篇 |
1959年 | 35篇 |
1958年 | 37篇 |
1957年 | 36篇 |
1956年 | 34篇 |
1955年 | 63篇 |
1954年 | 68篇 |
1950年 | 6篇 |
1949年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Xuexin Guo Jinbao Zhang Mucui Ni Li Liu Hongwei Lian Han Wang 《Journal of Materials Science: Materials in Electronics》2016,27(11):11262-11267
Hollow and porous α-Fe2O3 nanotubes were successfully synthesized by single nozzle electrospinning method followed by annealing treatment. The crystal structures and morphologies of the as-prepared materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. The as-prepared materials were applied to construct gas sensor devices which gas sensing properties were further investigated. The obtained results revealed that porous α-Fe2O3 nanotube gas sensors exhibit a markedly enhanced gas sensing performance compared with hollow α-Fe2O3 nanotube gas sensors, which was about three times higher to 100 ppm acetone at 240 °C. Interestingly, hollow and porous α-Fe2O3 nanotube gas sensors both showed fast response–recovery time and good selectivity, but the porous ones possessed the shorter recovery time. The improved properties could be attributed to the unique morphology of porous nanotubes. Thus, further improvement of performance in metal-oxide-semiconductors materials could be realized by preparation the unique porous structures of nanotubes. Moreover, it is expected that porous metal-oxide-semiconductors nanotubes could be further design as promising candidates for gas sensing materials. 相似文献
142.
Xiazhang Li Wei Zhu Yu Yin Xiaowang Lu Chao Yao Chaoying Ni 《Journal of Materials Science: Materials in Electronics》2016,27(5):4180-4185
La1?xAgxFeO3/halloysites nanotubes (HNTs) nanocomposite was synthesized by sol–gel method. It was characterized by X-ray diffraction, transmission electron microscope, Fourier transform infrared spectroscopy and UV–visible diffused reflectance spectroscopy measurements. The photo-activity of the La1?xAgxFeO3/HNTs nanocomposite was evaluated via degradation of methylene blue (MB) under visible-light irradiation. The results showed that the HNTs with unique pore structure favored the adsorption of organic molecules. Adequate Ag+ doping improved the absorption ability for visible light. The La0.95Ag0.05FeO3/HNTs demonstrated the best photocatalytic performance, which achieved as high as 99 % for MB degradation exposed 2 h irradiation. However,further increasing of Ag+ doping gradually reduced the photocatalytic activity. The nanocomposite catalyst showed outstanding recyclability after eight cycles which still remained up to 90 %. 相似文献
143.
Sang-Min Lee Jeong-Won Yoon Seung-Boo Jung 《Journal of Materials Science: Materials in Electronics》2016,27(2):1105-1112
The electromigration behavior of low-melting temperature Sn-58Bi (in wt%) solder joints was investigated with a high current density between 3 and 4.5 × 103 A/cm2 between 80 and 110 °C. In order to analyze the impact of various substrate metallizations on the electromigration performance of the Sn-58Bi joint, we used representative substrate metallizations including electroless nickel immersion gold (ENIG), electroless nickel electroless palladium immersion gold (ENEPIG), and organic solderability preservatives (OSP). As the applied current density increased, the time to failure (TTF) for electromigration decreased regardless of the temperature or substrate metallizations. In addition, the TTF slightly decreased with increasing temperature. The substrate metallization significantly affected the TTF for the electromigration behavior of the Sn-58Bi solder joints. The substrate metallizations for electromigration performance of the Sn-58Bi solder are ranked in the following order: OSP-Cu, ENEPIG, and ENIG. Due to the polarity effect, current stressing enhanced the fast growth of intermetallic compounds (IMCs) at the anode interface. Cracks occurred at the Ni3Sn4 + Ni3P IMC/Cu interfaces on the cathode sides in the Sn-58Bi/ENIG joint and the Sn-58Bi/ENEPIG joint; this was caused by the complete consumption of the Ni(P) layer. Alternatively, failure occurred via deformation of the bulk solder in the Sn-58Bi/OSP-Cu joint. The experimental results confirmed that the electromigration reliability of the Sn-58Bi/OSP-Cu joint was superior to those of the Sn-58Bi/ENIG or Sn-58Bi/ENEPIG joints. 相似文献
144.
Yucheng Zhao Jacob Misch Chang-An Wang 《Journal of Materials Science: Materials in Electronics》2016,27(6):5533-5542
MnO2 nanomaterials are synthesized via calcinations in air at various temperatures. Amorphous MnO2 masses appear between 100 and 300 °C and nanorods form above 400 °C. Transmission and scanning electron microscopy are used to observe the geometries of each material, with further structural analyses conducted using X-ray photoelectron spectroscopy, X-ray diffraction, and BET method. The electrochemical properties are investigated through galvanostatic charge/discharge cycling, electrochemical impedance spectra, and cyclic voltammetry within a three-electrode test cell filled with 1 mol L?1 Na2SO4 solution. The slightly asymmetric galvanostatic cycling curves suggest that the reversibility of the Faradaic reactions are imperfect, requiring a larger time to charge than discharge. The specific capacitances of each sample are calculated and trends are identified, proving that the samples synthesized at higher temperatures exhibit poorer electrochemical behaviors. The highest calculated specific capacitance is 175 F g?1 by the sample calcinated at 400 °C. However, the lower temperature samples exhibit more favorable geometric properties and higher overall average specific capacitances. For future research, it is suggested that surface modifications such as a carbon coating could be used in conjunction with the MnO2 nanorods to reach the electrochemical properties required by contemporary industrial applications. 相似文献
145.
Xingliang Chen Xingwei Wang Lindong Li Shuhua Qi 《Journal of Materials Science: Materials in Electronics》2016,27(6):5607-5612
Electric conductive and microwave absorbing material PANI/Ni/CF was prepared by in situ polymerization of polyaniline on the surface of nickel-coated carbon fiber (Ni/CF). The morphologies and structures of CF, Ni/CF, PANI and PANI/Ni/CF were characterized by scanning electron microscope and X-ray diffraction. Results show that the CF was wrapped tightly around the nickel layer, and the Ni/CF was coated by PANI. Measurement of four probes resistance tester indicates that the electrical conductivity of PANI/Ni/CF was great improved compared with PANI and PANI/CF. Vibrating sample magnetometry shows that the magnetic saturation intensity of Ni/CF and PANI/Ni/CF was 13.8 and 2.3 emu/g, respectively. According to the vector network analyzer, the microwave absorbing properties of PANI/Ni/CF were better than those of PANI and PANI/CF, and its minimum loss value is ?12.4 dB at 8.8 GHz. 相似文献
146.
Zan Li Yang Li Wei Qin Xiaohong Wu 《Journal of Materials Science: Materials in Electronics》2016,27(7):6673-6680
AZO powders were sensitized through chemisorption method by octa-iso-pentyloxy phthalocyanine lead and characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results showed that after sensitization process AZO photo physical properties improved greatly in visible regions. Photocatalytic degradation of methylene blue was studied under visible irradiation in aqueous solution and the pseudo first order model was used to obtain kinetic information of the photocatalytic degradation. The results indicated that photocatalytic activities of PbPc(iso-PeO)8-AZO were better than of AZO powders. 相似文献
147.
Nowadays, heating cables are used as heat sources for heating pavements in practical engineering. However, there is a contradiction between the snow melting function and the interlaminar stability of heating pavement. In order to solve the contradiction, the interlaminar failure behavior of asphalt mixture coupled heating cables specimen (AMCS) was researched, through experiments and the finite element method. Under the different conditions of heating cables and rolling times, a series of direct shear tests was performed at the interface of AMCS, to compare the interlaminar stability of three different AMCS. Meanwhile, based on the bilinear cohesive zone model and coulomb friction model a 2D finite element model was established, to simulate this shear failure processes and make up for the limitations of the experiment. According to above test and simulation results, the failure mechanism and the weakest interface in AMCS were found, and the influence of the heating cable’s diameter and embedded spacing on the interlaminar shear strength were found. Then, a modified coulomb theorem model was proposed to predict the shear strength of the AMCS. This research enriches the design theory of the heating pavement and it has great significance for its structural design of heating asphalt pavement. 相似文献
148.
Ying C. MacNab 《TEST》2018,27(3):554-569
I thank the discussants, Miguel A. Martinez-Beneito, Fedel Greco, Carlo Trivisano, Stephan R Sain, and Reinhard Furrer, for their insightful and stimulating commentary. The rejoinder is organized in five sections: (1) the M-based models, (2) posterior sensitivity to prior choices for \({\varvec{C}}\) and \({\varvec{\varSigma }}\), (3) stationary and non-stationary (M)GMRFs, (4) various approaches to model formulation and related applications, and (5) statistical computation. 相似文献
149.
The analysis of mechanisms which affect the formation of agglomerates and determine the granulation process in a broad sense encounters difficulties related to the many ways of the formation of granules. The aim of the study was to perform a qualitative and quantitative analysis of granulation mechanisms with special reference to agglomerates’ disintegration in the disc granulation process. This paper contains an analysis of disintegration mechanisms (abrasion and crushing) of agglomerates during the disc granulation of dolomite. The analysis of the mechanisms taking place during the process concerns the granulation stage after wetting. During the research, each time after the wetting stage, the size fraction 10–12.5 mm was substituted with an analogous fraction wetted by means of an aqueous solution of a coloring agent and the process was continued. After the specified time of granulation, the obtained product was sieved through laboratory sieves and then the content of the provided coloring agent in different size fractions was analyzed by means of a spectrophotometer. Measuring the absorbance of the analyzed samples and granulometric composition of the bed, the level and cause of the migration of material of the tested fraction into other size classes were determined, and at the same time, the occurring granulation mechanisms were analyzed. The proposed model and measurement method consisting of determining the absorbance of the tested granulometric fraction enable the qualitative and quantitative analysis of granulation mechanisms are encountered during the carrying-out of the process after wetting the bed. 相似文献
150.
The calibration of discrete element method (DEM) simulations is typically accomplished in a trial-and-error manner. It generally lacks objectivity and is filled with uncertainties. To deal with these issues, the sequential quasi-Monte Carlo (SQMC) filter is employed as a novel approach to calibrating the DEM models of granular materials. Within the sequential Bayesian framework, the posterior probability density functions (PDFs) of micromechanical parameters, conditioned to the experimentally obtained stress–strain behavior of granular soils, are approximated by independent model trajectories. In this work, two different contact laws are employed in DEM simulations and a granular soil specimen is modeled as polydisperse packing using various numbers of spherical grains. Knowing the evolution of physical states of the material, the proposed probabilistic calibration method can recursively update the posterior PDFs in a five-dimensional parameter space based on the Bayes’ rule. Both the identified parameters and posterior PDFs are analyzed to understand the effect of grain configuration and loading conditions. Numerical predictions using parameter sets with the highest posterior probabilities agree well with the experimental results. The advantage of the SQMC filter lies in the estimation of posterior PDFs, from which the robustness of the selected contact laws, the uncertainties of the micromechanical parameters and their interactions are all analyzed. The micro–macro correlations, which are byproducts of the probabilistic calibration, are extracted to provide insights into the multiscale mechanics of dense granular materials. 相似文献