首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   102篇
  国内免费   11篇
电工技术   44篇
综合类   3篇
化学工业   330篇
金属工艺   38篇
机械仪表   67篇
建筑科学   64篇
能源动力   122篇
轻工业   102篇
水利工程   9篇
石油天然气   15篇
无线电   126篇
一般工业技术   267篇
冶金工业   63篇
原子能技术   6篇
自动化技术   246篇
  2024年   4篇
  2023年   26篇
  2022年   40篇
  2021年   78篇
  2020年   68篇
  2019年   96篇
  2018年   111篇
  2017年   122篇
  2016年   98篇
  2015年   83篇
  2014年   95篇
  2013年   148篇
  2012年   88篇
  2011年   107篇
  2010年   71篇
  2009年   67篇
  2008年   41篇
  2007年   28篇
  2006年   20篇
  2005年   18篇
  2004年   12篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
排序方式: 共有1502条查询结果,搜索用时 15 毫秒
21.
Multidisciplinary design optimization approaches have significant effects on aerospace vehicle design methodology. In designing next generation of space launch systems, MDO processes will face new and greater challenges. This study develops a system sensitivity analysis method to optimize multidisciplinary design of a two-stage small solid propellant launch vehicle. Suitable design variables, technological, and functional constraints are considered. Appropriate combinations of disciplines such as propulsion, weight, geometry, and trajectory simulation are used. A generalized sensitivity equation is developed and solved. These results are basis for optimization. Comparison of the developed approach with gradient optimization methods reveals that developed approach requires less computation time.  相似文献   
22.
Perovskite light-emitting diodes (PeLEDs) are advancing because of their superior external quantum efficiencies (EQEs) and color purity. Still, additional work is needed for blue PeLEDs to achieve the same benchmarks as the other visible colors. This study demonstrates an extremely efficient blue PeLED with a 488 nm peak emission, a maximum luminance of 8600 cd m−2, and a maximum EQE of 12.2% by incorporating the double-sided ethane-1,2-diammonium bromide (EDBr2) ligand salt along with the long-chain ligand methylphenylammonium chloride (MeCl). The EDBr2 successfully improves the interaction between 2D perovskite layers by reducing the weak van der Waals interaction and creating a Dion–Jacobson (DJ) structure. Whereas the pristine sample (without EDBr2) is inhibited by small stacking number (n) 2D phases with nonradiative recombination regions that diminish the PeLED performance, adding EDBr2 successfully enables better energy transfer from small n phases to larger n phases. As evidenced by photoluminescence (PL), scanning electron microscopy (SEM), and atomic force microscopy (AFM) characterization, EDBr2 improves the morphology by reduction of pinholes and passivation of defects, subsequently improving the efficiencies and operational lifetimes of quasi-2D blue PeLEDs.  相似文献   
23.
24.
The aim of this study is to introduce natural‐based polymers, chitosan and starch, to design a remedial nanocomposite, comprising of cerium oxide nanoparticles and silver nanoparticles, to investigate their effects in accelerating wound healing and in wound microbial load. Cerium oxide nanoparticles synthesized in starch solution added to the colloidal dispersion of synthesized silver nanoparticles in chitosan to make a three‐component nanomaterial. Mice were anaesthetized and two parallel full‐thickness round wounds were excised under aseptic conditions with the help of sterile dermal biopsy punch. Furthermore, effects of silver‐chitosan and silver‐cerium‐chitosan nanocomposite had evaluated on rate of wound closure and collagen density and on microbial load of wound in full‐thickness model. Results showed that both silver chitosan and silver‐cerium‐chitosan had significant impact on acceleration of wound closure and collagen content and on reduction of wound microbial load in comparison with control group, which was, received no treatments. However, the silver‐cerium‐chitosan nanocomposite is more potent than silver‐chitosan group and control group in wound closure. The wound healing effects of silver‐cerium‐chitosan nanocomposite are due to unique features of its three components and this nanocomposite promises impressive remedies for clinical application.Inspec keywords: wounds, nanocomposites, nanomedicine, nanoparticles, proteins, cerium, silver, polymers, colloids, patient treatmentOther keywords: biopolymer‐based nanocomposite wound dressing, wound healing properties, wound microbial load, natural‐based polymers, chitosan, remedial nanocomposite, cerium oxide nanoparticles, nanoceria, silver nanoparticles, starch solution, three‐component nanomaterial, synthesised silver nanoparticles, ketamine intraperitoneal injection, silver‐cerium‐chitosan nanocomposite, wound closure, collagen density, wound healing effects, wound care, aseptic conditions, sterile dermal biopsy punch, Ag‐Ce  相似文献   
25.
In this study, hydrogenated amorphous carbon thin films, structurally similar to diamond‐like carbon (DLC), were deposited on the surface of untreated and plasma nitrocarburised (Nitrocarburizing‐treated) stainless steel medical implants using a plasma‐enhanced chemical vapour deposition method. The deposited DLC thin films on the nitrocarburising‐treated implants (CN+DLC) exhibited an appropriate adhesion to the substrates. The results clearly indicated that the applied DLC thin films showed excellent pitting and corrosion resistance with no considerable damage on the surface in comparison with the other samples. The CN+DLC thin films could be considered as an efficient approach for improving the biocompatibility and chemical inertness of metallic implants.Inspec keywords: tissue engineering, bone, biomedical materials, electrochemistry, amorphous state, carbon, hydrogen, thin films, plasma CVD, adhesion, corrosion resistance, surface hardeningOther keywords: electrochemical performance, plasma nitrocarburised stainless steel medical implants, hydrogenated amorphous carbon thin films, bone tissue engineering, plasma‐enhanced chemical vapour deposition method, adhesion, corrosion resistance, biocompatibility, chemical inertness, metallic implants, C:H  相似文献   
26.
In this study, we examine the optimal allocation of demand across a set of suppliers in a supply chain that is exposed to supply risk and environmental risk. A two-stage mixed-integer programming model is used to develop a flexible sourcing strategy under disruptions. Our model integrates supplier selection and demand allocation with transportation channel selection and provides contingency plans to mitigate the negative impacts of disruptions and minimise total network costs. Finally, a numerical example is presented to illustrate the model and provide insights. The findings suggest that developing contingency plans using flexibility in suppliers’ production capacity is an effective strategy for firms to mitigate the severity of disruptions. We also show that flexibility and reliability of the suppliers and regions play a significant role in determining contingency plans for during disruption. Findings generally show that highly flexible suppliers receive less allocation, and their flexible capacity is reserved for disruptions. For firms that do not incorporate risk management into supplier selection and allocation, the recommendation is to source from fewer, more reliable suppliers with less risk of disruption. Our findings also emphasise that the type of disruption has important implications for supplier selection and demand allocation. This study highlights the supply chain risk management strategy of regionalising as a means for minimising the impact of environmental disruptions.  相似文献   
27.
Manufacturing a low-resistive Ohmic metal contact on p-type InP crystals for various applications is a challenge because of the Fermi-level pinning via surface defects and the diffusion of p-type doping atoms in InP. Development of wet-chemistry treatments and nanoscale control of p-doping for InP surfaces is crucial for decreasing the device resistivity losses and durability problems. Herein, a proper combination of HCl-based solution immersion, which directly provides an unusual wet chemical-induced InP(100)c(2 × 2) atomic structure, and low-temperature Mg-surface doping of the cleaned InP before Ni-film deposition is demonstrated to decrease the contact resistivity of Ni/p-InP by the factor of 10 approximately as compared to the lowest reference value without Mg. Deposition of the Mg intermediate layer on p-InP and postheating of Mg/p-InP at 350 °C, both performed in ultrahigh-vacuum (UHV) chamber, lead to intermixing of Mg and InP elements according to X-ray photoelectron spectroscopy. Introducing a small oxygen gas background (O2 ≈ 10−6 mbar) in UHV chamber during the postheating of Mg/p-InP enhances the indium outdiffusion and provides the lowest contact resistivity. Quantum mechanical simulations indicate that the presence of InP native oxide or/and metal indium alloy at the interface increases In diffusion.  相似文献   
28.
In this paper we discuss a pulsed second sound experiment, aimed at determining accurately the critical exponent , and the predicted logarithmic correction to scaling, for the superfluid density along a tricritical path in the 3 He- 4 He phase diagram. We present an accurate estimate for the limits for closest approach to the tricritical point, as set by gravitationally induced sample inhomogeneities and finite size effects, and discuss some of the complications associated with measurements close to the tricritical point.  相似文献   
29.
One of the most encumbering issues in RF MEMS resonators is spurious modes. The problem of spurious modes becomes more critical, when the ring type resonators are used. In the ring shape anchored contour mode disk resonator, for achieving a low serial resistance, the inner radius of the disk must be increased. This causes the spurious modes to become too close to the desired mode and degrade the operation of the resonator. In this work, spurious modes of before-mentioned device are introduced and their characteristics are evaluated by exact analytical approach. Based on those analytical approaches, we introduce two techniques for spurious mode suppression. The first technique is based on exciting the desired mode by proper electrode engineering and hence is an electrical approach. The second technique is reconfiguring of the anchor from a continuous ring to crossed ring segments and locating the segments on the phase discriminating lines to increase the insertion loss for spurious modes and decrease the losses for the fundamental mode. The final harmonic analysis verifies that the proposed techniques result a resonator with a pure frequency spectrum and spurious modes excluded over a very wide frequency range.  相似文献   
30.
In wireless ad hoc networks cooperation among nodes cannot always be assumed since nodes with limited resources and different owners are capable of making independent decisions. Cooperation problems in topology control and packet forwarding tasks have been mostly studied separately but these two tasks are not independent. Considering a joint cooperation problem by taking into account dependencies between tasks will result in more reliable and efficient networks. In this paper topology control definition is extended to cover cooperation problem in both packet forwarding and topology control in a single problem. In this definition nodes have to adjust their transmission power and decide on their relay role. This paper models the interactions of nodes as a potential game with two-dimensional utility function. The presented model, named TCFORCE (Topology Control packet FORwarding Cooperation Enforcement), preserves the network connectivity and reduces the energy consumption by providing cooperative paths between all pairs of nodes in the network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号