首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1355篇
  免费   67篇
  国内免费   2篇
电工技术   41篇
化学工业   396篇
金属工艺   13篇
机械仪表   30篇
建筑科学   41篇
矿业工程   3篇
能源动力   74篇
轻工业   154篇
石油天然气   2篇
无线电   110篇
一般工业技术   293篇
冶金工业   41篇
原子能技术   10篇
自动化技术   216篇
  2023年   10篇
  2022年   45篇
  2021年   85篇
  2020年   37篇
  2019年   36篇
  2018年   46篇
  2017年   27篇
  2016年   48篇
  2015年   47篇
  2014年   53篇
  2013年   111篇
  2012年   91篇
  2011年   105篇
  2010年   94篇
  2009年   63篇
  2008年   71篇
  2007年   53篇
  2006年   56篇
  2005年   43篇
  2004年   43篇
  2003年   32篇
  2002年   35篇
  2001年   14篇
  2000年   20篇
  1999年   15篇
  1998年   23篇
  1997年   14篇
  1996年   13篇
  1995年   15篇
  1994年   9篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1976年   3篇
  1973年   1篇
  1972年   6篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有1424条查询结果,搜索用时 31 毫秒
51.
Poly(l-lactic acid) (PLLA)/graphene nanoplatelets (GnP) nanocomposites were prepared through solvent casting and coagulation methods. The better dispersion of graphene was achieved by ultrasounds and its effect on crystallinity, thermomechanical and electrical properties of PLLA were studied and compared in both methods. Differential scanning calorimetry (DSC) was used to investigate the crystallinity of PLLA and its composites. Field emission gun scanning electron microscope (FEG-SEM) and wide-angle X-ray scattering (WAXS) were employed to characterize the microstructure of PLLA crystallites. Dynamic mechanical thermal analysis (DMTA) was performed to study the thermomechanical properties of the nanocomposites. FEG-SEM images illustrated finer dispersion of GnP in samples obtained by coagulation method with respect to solvent casting method. Graphene imparted higher electrical conductivity to nanocomposites obtained by solvent casting under ultrasound due to better formation of graphene network. DSC thermograms and their resulting data showed positive effects of GnP on crystallization kinetics of PLLA in both methods enhanced by the nucleating effect of graphene particles. Meanwhile, the effect of GnP, as nucleating agent, was more prominent in samples produced by coagulation method without utilization of ultrasounds. WAXS patterns represented the same characteristic peaks of PLLA in nanocomposite specimens suggesting similar crystalline structure of PLLA in presence of graphene, and the intensified peaks of nanocomposites compared to neat PLLA confirmed the DSC results regarding its improved crystallinity. Graphene increased storage modulus in rubbery region and glass transition temperature of nanocomposites in the coagulation method due to restricted mobility of PLLA chains.  相似文献   
52.
53.
Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.  相似文献   
54.
The use of proper nanocarriers for dermal and transdermal delivery of anti-inflammatory drugs recently gained several attentions in the scientific community because they pass intact and accumulate payloads in the deepest layers of skin tissue. Ascorbyl palmitate-based vesicles (aspasomes) can be considered a promising nanocarrier for dermal and transdermal delivery due to their skin whitening properties and suitable delivery of payloads through the skin. The aim of this study was the synthesis of multidrug Idebenone/naproxen co-loaded aspasomes for the development of an effective anti-inflammatory nanomedicine. Aspasomes had suitable physicochemical properties and were safe in vivo if topically applied on human healthy volunteers. Idebenone/naproxen co-loaded aspasomes demonstrated an increased therapeutic efficacy of payloads compared to the commercially available Naprosyn® gel, with a rapid decrease of chemical-induced erythema on human volunteers. These promising results strongly suggested a potential application of Idebenone/naproxen multidrug aspasomes for the development of an effective skin anti-inflammatory therapy.  相似文献   
55.
Organic–inorganic hybrid coatings on glass substrates with superhydrophobic properties and with improved scratch resistance were obtained by means of applying a multilayer approach including multiple sol–gel processes. The coatings exhibited a water contact angle (WCA) higher than 150°. Ultraviolet (UV)-curable vinyl ester resins and vinyltriethoxysilane (VTEOS) as coupling agent were employed to increase the adhesion between substrate and the inorganic layers. The surfaces were characterized by means of dynamic contact angle and roughness measurements. Indeed, the occurrence of superhydrophobic behavior was observed. The scratch resistance of the hybrid coatings was tested to evaluate the adhesion of the coatings to the glass substrate. The proposed preparation method for scratch resistant, mechanically stable, superhydrophobic coatings is simple and can be applied on large areas of different kinds of substrates.  相似文献   
56.
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients’ quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients’ quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.  相似文献   
57.
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS.  相似文献   
58.
The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water–acetonitrile solutions containing proteases inhibitors and analyzed by LC–high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey’s post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3–22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the β-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin β4 and β10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization.  相似文献   
59.
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.  相似文献   
60.
The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号