全文获取类型
收费全文 | 1380篇 |
免费 | 59篇 |
国内免费 | 2篇 |
专业分类
电工技术 | 41篇 |
化学工业 | 418篇 |
金属工艺 | 12篇 |
机械仪表 | 31篇 |
建筑科学 | 41篇 |
矿业工程 | 3篇 |
能源动力 | 74篇 |
轻工业 | 154篇 |
石油天然气 | 2篇 |
无线电 | 111篇 |
一般工业技术 | 295篇 |
冶金工业 | 33篇 |
原子能技术 | 10篇 |
自动化技术 | 216篇 |
出版年
2024年 | 2篇 |
2023年 | 13篇 |
2022年 | 64篇 |
2021年 | 85篇 |
2020年 | 37篇 |
2019年 | 36篇 |
2018年 | 46篇 |
2017年 | 27篇 |
2016年 | 48篇 |
2015年 | 47篇 |
2014年 | 53篇 |
2013年 | 110篇 |
2012年 | 91篇 |
2011年 | 105篇 |
2010年 | 94篇 |
2009年 | 63篇 |
2008年 | 72篇 |
2007年 | 53篇 |
2006年 | 58篇 |
2005年 | 44篇 |
2004年 | 43篇 |
2003年 | 32篇 |
2002年 | 35篇 |
2001年 | 14篇 |
2000年 | 20篇 |
1999年 | 15篇 |
1998年 | 23篇 |
1997年 | 14篇 |
1996年 | 13篇 |
1995年 | 15篇 |
1994年 | 9篇 |
1993年 | 10篇 |
1992年 | 8篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1965年 | 1篇 |
排序方式: 共有1441条查询结果,搜索用时 15 毫秒
31.
Debora Giordano Francesca Vanara Amedeo Reyneri Massimo Blandino 《International Journal of Food Science & Technology》2016,51(11):2468-2473
Maize germ is a by‐product of the maize milling process that is characterised by a high nutritional value. Currently, heat treatments are employed to prevent full‐fat maize germ from spoilage. The aim of this research was to study the effect of five dry‐heat treatments on the nutritional value of full‐fat maize germ. The results confirmed that after each dry‐heat treatment, the lipase activity decreases but the use of high temperatures could be detrimental for phytosterol and thiamine concentrations. The main negative effects have been observed after treatments at 140 °C for 30 min and 160 °C for 10 min. No significant difference has been observed for protein, ash or fatty acid contents. The treatment at 140 °C for 20 min resulted an optimal combination between temperature and heating time to inactivate lipase without altering deeply the nutritional value and the colour of maize germ. 相似文献
32.
Accardi R Oxelmark E Jauniaux N de Pinto V Marchini A Tommasino M 《Yeast (Chichester, England)》2004,21(7):539-548
Members of the YERO57c/YJGFc/UK114 protein family have been identified in bacteria and eukaryotes. The budding yeast Saccharomyces cerevisiae contains two different proteins of this family, Hmf1p and Mmf1p. We have previously shown that Mmf1p is a mitochondrial protein functionally related to its human homologue and able to influence the maintenance of mitochondrial DNA. Deletion of Mmf1 results in loss of the mitochondrial genome. Using a multicopy suppression approach, we have identified a protein of the mitochondrial large ribosomal subunit, MRPL40, which stabilizes mtDNA in Deltammf1 cells. Overexpression of MRPL40 did not prevent loss of mtDNA in a mutant strain lacking the mitochondrial protein Abf2p. Thus, MRPL40 does not have a general effect on mtDNA stability, but it may be specific for the mmf1-null strain. We also show that the Deltamrpl40 cells present a similar phenotype to the mmf1-null strain, having reduced mtDNA stability and growth rate. Furthermore, we observed that rho(+)Deltamrpl40 haploid cells can be obtained when tetrads are directly dissected on medium containing a non-fermentable carbon source. Thus, replication and segregation of the mtDNA can occur in the absence of MRPL40. We also show that another mitochondrial ribosomal protein, MRPL38, is able to overcome the Deltammf1-associated defect. Together, our results suggest a link between Mmf1p and the two mitochondrial ribosomal proteins. 相似文献
33.
Modern cloud data centers rely on server consolidation (the allocation of several virtual machines on the same physical host) to minimize their costs. Choosing the right consolidation level (how many and which virtual machines are assigned to a physical server) is a challenging problem, because contemporary multitier cloud applications must meet service level agreements in face of highly dynamic, nonstationary, and bursty workloads. In this paper, we deal with the problem of achieving the best consolidation level that can be attained without violating application service level agreements. We tackle this problem by devising fuzzy controller for consolidation and QoS (FC2Q), a resource management framework exploiting feedback fuzzy logic control, that is able to dynamically adapt the physical CPU capacity allocated to the tiers of an application in order to precisely match the needs induced by the intensity of its current workload. We implement FC2Q on a real testbed and use this implementation to demonstrate its ability of meeting the aforementioned goals by means of a thorough experimental evaluation, carried out with real‐world cloud applications and workloads. Furthermore, we compare the performance achieved by FC2Q against those attained by existing state‐of‐the‐art alternative solutions, and we show that FC2Q works better than them in all the considered experimental scenarios. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
34.
Fabio Fais Reda Juskeviciene Veronica Francardo Stphanie Mateos Manuela Guyard Ccile Viollet Samuel Constant Massimo Borelli Ilja P. Hohenfeld 《International journal of molecular sciences》2022,23(7)
The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens. 相似文献
35.
36.
The vibration and noise radiation from fluid-loaded cylindrical shells are controlled by using multiple stiffeners and passive constrained layer damping treatment. Dynamic and fluid finite elements are developed to study the fundamental phenomena governing the coupling between the stiffened shell, with and without damping, and the fluid domain surrounding it. The models are used to predict the response of the shell and to evaluate the effect of stiffening rings and damping treatment on both the structural vibration and noise radiation in the fluid domain. The geometry of the shell and fluid domain allows the formulation of a harmonic-based model, which uncouples the fluid–structural response of modes corresponding to different numbers of circumferential nodes.In this study, it is shown that stiffening of the shell reduces the amplitude of the vibration and noise radiation, particularly for high-order lobar modes. The attenuation of the shell response and sound radiation can be increased significantly through the application of passive constrained layer damping treatments on the inner surface of the stiffening rings. 相似文献
37.
Alessandro Marchioni Roberto Tonelli Alessandro Andreani Gaia Francesca Cappiello Matteo Fermi Fabiana Trentacosti Ivana Castaniere Riccardo Fantini Luca Tabbì Dario Andrisani Filippo Gozzi Giulia Bruzzi Linda Manicardi Antonio Moretti Serena Baroncini Anna Valeria Samarelli Massimo Pinelli Giorgio De Santis Alessandro Stefani Daniele Marchioni Francesco Mattioli Enrico Clini 《International journal of molecular sciences》2022,23(5)
Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS. 相似文献
38.
Martina Casarin Tiago Moderno Fortunato Saima Imran Martina Todesco Deborah Sandrin Giulia Borile Ilaria Toniolo Massimo Marchesan Gino Gerosa Andrea Bagno Filippo Romanato Emanuele Luigi Carniel Alessandro Morlacco Fabrizio Dal Moro 《International journal of molecular sciences》2022,23(5)
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients’ quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients’ quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute. 相似文献
39.
Diana Valeria Rossetti Ilaria Inserra Alessia Nestic Federica Vincenzoni Federica Iavarone Irene Messana Massimo Castagnola Luca Massimi Gianpiero Tamburrini Massimo Caldarelli Claudia Desiderio 《International journal of molecular sciences》2022,23(6)
The present investigation aimed to explore the intact proteome of tissues of pediatric brain tumors of different WHO grades and localizations, including medulloblastoma, pilocytic astrocytoma, and glioblastoma, in comparison with the available data on ependymoma, to contribute to the understanding of the molecular mechanisms underlying the onset and progression of these pathologies. Tissues have been homogenized in acidic water–acetonitrile solutions containing proteases inhibitors and analyzed by LC–high resolution MS for proteomic characterization and label-free relative quantitation. Tandem MS spectra have been analyzed by either manual inspection or software elaboration, followed by experimental/theoretical MS fragmentation data comparison by bioinformatic tools. Statistically significant differences in protein/peptide levels between the different tumor histotypes have been evaluated by ANOVA test and Tukey’s post-hoc test, considering a p-value > 0.05 as significant. Together with intact protein and peptide chains, in the range of molecular mass of 1.3–22.8 kDa, several naturally occurring fragments from major proteins, peptides, and proteoforms have been also identified, some exhibiting proper biological activities. Protein and peptide sequencing allowed for the identification of different post-translational modifications, with acetylations, oxidations, citrullinations, deamidations, and C-terminal truncations being the most frequently characterized. C-terminal truncations, lacking from two to four amino acid residues, particularly characterizing the β-thymosin peptides and ubiquitin, showed a different modulation in the diverse tumors studied. With respect to the other tumors, medulloblastoma, the most frequent malignant brain tumor of the pediatric age, was characterized by higher levels of thymosin β4 and β10 peptides, the latter and its des-IS form particularly marking this histotype. The distribution pattern of the C-terminal truncated forms was also different in glioblastoma, particularly underlying gender differences, according to the definition of male and female glioblastoma as biologically distinct diseases. Glioblastoma was also distinguished for the peculiar identification of the truncated form of the α-hemoglobin chain, lacking the C-terminal arginine, and exhibiting oxygen-binding and vasoconstrictive properties different from the intact form. The proteomic characterization of the undigested proteome, following the top-down approach, was challenging to originally investigate the post-translational events that differently characterize pediatric brain tumors. This study provides a contribution to elucidate the molecular profiles of the solid tumors most frequently affecting the pediatric age, and which are characterized by different grades of aggressiveness and localization. 相似文献
40.
Isabel Pagani Pietro Demela Silvia Ghezzi Elisa Vicenzi Massimo Pizzato Guido Poli 《International journal of molecular sciences》2022,23(6)
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells. 相似文献