首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   18篇
  国内免费   1篇
电工技术   2篇
化学工业   141篇
金属工艺   6篇
机械仪表   4篇
建筑科学   3篇
能源动力   3篇
轻工业   10篇
石油天然气   2篇
无线电   22篇
一般工业技术   39篇
冶金工业   7篇
自动化技术   23篇
  2024年   1篇
  2023年   8篇
  2022年   39篇
  2021年   58篇
  2020年   12篇
  2019年   11篇
  2018年   12篇
  2017年   14篇
  2016年   12篇
  2015年   17篇
  2014年   13篇
  2013年   15篇
  2012年   9篇
  2011年   18篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  1998年   1篇
  1996年   1篇
  1986年   1篇
排序方式: 共有262条查询结果,搜索用时 250 毫秒
11.
12.
Linseed oil, also known as flaxseed oil, is obtained from the dried, ripened seeds of the flax plant (Linum usitatissimum). The oil is obtained by pressing, sometimes followed by solvent extraction supported by a refining process. Linseed oil is an edible oil that is in demand as a nutritional supplement, as a source of α‐linolenic acid an n‐3 fatty acid. The aim of this work was to investigate: (1) the influence of the corn crisp extrusion process on the degradation of fatty acids in linseed oil (LO) and some preparations obtained from the linseed oil such as ethyl ester (EE) and free fatty acids (FFA) added to the corn in order to increase the nutritional value of the crisps, (2) influence of the oil and two fatty preparations obtained from it on the quality of corn crisps, (3) interaction of the lipid fraction with starch. The extrusion process did not degrade the fatty acids significantly. Expansion ratio obtained in the corn crisp extrusion process decreased from 620 % down to 153 %, the size of pores/thickness of the starch–protein walls forming the structure of the extruded product decreased from 10 μm down to 4 μm, the hardness of the crisps increased from 20 to 75 N, and number of lipid–starch complexes increased with rising polarity of the lipid fraction. FFA were complexed mostly by starch (about 90 %), to a lesser degree by EE (about 60 %) and to the least extent by triacylglycerols (about 10 %). The studies performed under industrial conditions using the single screw extruder for the production of corn crisps with the application of standard parameters of the extrusion process indicated that the addition of a mass of 5 % of the various lipids (triacylglycerols of linseed oil, ethyl esters and fatty acids obtained from linseed oil) to corn grits prior to the extrusion process significantly affect the quality of corn crisps.  相似文献   
13.
In the present study calcium hydroxyapatites enriched at 0.08 wt% in Mn2+ ions (Mn–HA) and their unsubstituted forms (HA) were synthesized using the same standard wet chemical route. Mn‐HA and HA were both calcined at 800°C to give Mn‐HAc and HAc, respectively or sintered at 1250°C, to give Mn‐HAs and HAs, respectively. The influence of the heat treatment on physicochemical properties of Mn‐HA was investigated using powder X‐ray diffraction (PXRD), scanning, and transmission electron microscopy (SEM and TEM), and solid‐state nuclear magnetic resonance (ssNMR). Mn‐HAc and Mn‐HAs were compared to each other and to HAc and HAs, respectively. Assignment of the proton ssNMR peaks from high‐temperature‐treated apatites has been revised. It was found that Mn–HAc and HAc were nanocrystalline, while Mn‐HAs and HAs comprised micrometer sized, partially fused particles (SEM and TEM). PXRD and ssNMR demonstrated that the incorporation of Mn2+ into the crystal lattice of hydroxyapatite significantly facilitates its dehydroxylation and decomposition to oxyhydroxyapatite during calcination at 800°C, and induces its transformation to tetracalcium phosphate (TTCP) and alpha‐tricalcium phosphate (α‐TCP) at 1250°C. Contamination by CaO has also been detected. The 1H→31P NMR cross‐polarization experiments have indicated that the Mn2+ ions preferentially occupied the Ca(I) position in the crystallographic unit cell of Mn‐HAc. In Mn‐HAs, the Mn2+ ions were evenly distributed between the Ca(I) and Ca(II) positions.  相似文献   
14.
HYDROCK method aims to store thermal energy in the rock mass using hydraulically propagated fracture planes. The hydraulic fractures can interact with the pre-existing natural fractures resulting in a complex fracture network, which can influence the storage performance. This study investigates the interactions between hydraulic and natural fractures using a fracture mechanics approach. The new functionality of the fracture mechanics modelling code FRACOD that enables crossing of hydraulically driven fracture by a pre-existing fracture is presented. A series of two-dimensional numerical models is prepared to simulate the interaction at different approach angles in granitic rock of low permeability. It is demonstrated that multiple interaction mechanisms can be simulated using the fracture mechanics approach. The numerical results are in agreement with the modified Renshaw and Pollard analytical criterion for fracture crossing. The results show that for large approach angles, the hydraulic fracture crosses the natural fracture, whereas for small approach angles, the hydraulic fracture activates the natural fracture and the wing-shaped tensile fractures are propagated from its tips. Thus, the presence of fractures with low dip angles can lead to the growth of more complex fracture network that could impair the thermal performance of the HYDROCK method.  相似文献   
15.
Nonisothermal crystallization kinetics of highly‐filled polyolefin composites was studied by means of differential scanning calorimetry (DSC). Two types of commercial calcium carbonate based fillers (modified with stearic acid and nonmodified one) were used for our investigations. In order to evaluate the crystallization kinetics changes of composites, the Avrami theory modified by Jeziorny was used. Validity of mineral fillers modification with stearic acid has been proved by thermal analysis. Because of the suppression of the heterogeneous nucleation effect resulting from calcium carbonate with stearic acid modification, an increase in the processability of highly‐filled polyolefin cast films might occur. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41201.  相似文献   
16.
Hexokinase 2 (HK2), an enzyme of the sugar kinase family, plays a dual role in glucose metabolism and mediating cancer cell apoptosis, making it an attractive target for cancer therapy. While positive HK2 expression usually promotes cancer cells survival, silencing or inhibiting this enzyme has been found to improve the effectiveness of anti-cancer drugs and even result in cancer cell death. Previously, benitrobenrazide (BNBZ) was characterized as a potent HK2 inhibitor with good anti-cancer activity in mice, but the effect of its trihydroxy moiety (pyrogallol-like) on inhibitory activity and some cellular functions has not been fully understood. Therefore, the main goal of this study was to obtain the parent BNBZ (2a) and its three dihydroxy derivatives 2b–2d and to conduct additional physicochemical and biological investigations. The research hypothesis assumed that the HK2 inhibitory activity of the tested compounds depends on the number and location of hydroxyl groups in their chemical structure. Among many studies, the binding affinity to HK2 was determined and two human liver cancer cell lines, HepG2 and HUH7, were used and exposed to chemicals at various times: 24 h, 48 h and 72 h. The study showed that the modifications to the structures of the new BNBZ derivatives led to significant changes in their activities. It was also found that these compounds tend to aggregate and exhibit toxic effects. They were found to contribute to: (a) DNA damage, (b) increased ROS production, and (c) disruption of cell cycle progression. It was observed that, HepG2, occurred much more sensitive to the tested chemicals than the HUH7 cells; However, regardless of the used cell line it seems that the increase in the expression of HK2 in cancer cells compared to normal cells which have HK2 at a very low level, is a serious obstacle in anti-cancer therapy and efforts to find the effective inhibitors of this enzyme should be intensified.  相似文献   
17.
18.
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.  相似文献   
19.
Effects of vinegar, oil, and sour cream brines on meat quality of 4 popular cold marinades from herring were investigated in the study. Cover brine type affected the composition and nutritive value of meat as well as the sensory and microbiological quality of marinated herring. Qualitative differences resulted from cover brine penetration into meat, and from diffusion of components from meat to vinegar brine. Compared to oil and sour cream, vinegar brine contributed to increased concentrations of salt and acetic acid, hardness, color brightness of marinades meat and to increased microbial contamination of meat. Furthermore, vinegar caused nitrogen losses to 15%, including valuable products of protein hydrolysis, enzymes, and total volatile bases. The rolling up of fillets reduced diffusion even by 50%. In turn, oil and sour cream were causing mainly a higher fat content and overall sensory evaluation of the marinades.  相似文献   
20.
In ferritic steels a propagating cleavage microcrack changes its propagation direction as it advances from grain to grain. This is due to differences in the orientation of the cleavage planes of two neighboring grains. In order to reach a cleavage plane in a new grain, a microcrack must first penetrate the grain boundary. Grain boundaries therefore act as natural barriers in cleavage fracture. The influence of a grain boundary and the associated misorientation in cleavage planes on crack arrest is here examined using a 3D finite element model with axisymmetric periodicity, representing two grains whose cleavage planes are tilted and twisted relative to each other. The temperature dependent mechanical properties of ferrite are modeled using a temperature dependent viscoplastic response. The development of the crack front as the microcrack penetrates through a grain boundary is here presented. The influence of the twist misorientation on the critical grain size, defined as the largest grain size that can arrest a rapidly propagating microcrack, is examined in a temperature range corresponding to the ductile to brittle transition (DBT) region. It is shown that when both tilt and twist misorientation are present, the influence of tilt and twist, respectively, on crack growth resistance can be decoupled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号