首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   99篇
  国内免费   4篇
电工技术   16篇
综合类   2篇
化学工业   358篇
金属工艺   21篇
机械仪表   24篇
建筑科学   30篇
能源动力   55篇
轻工业   177篇
水利工程   5篇
石油天然气   1篇
无线电   111篇
一般工业技术   228篇
冶金工业   40篇
原子能技术   4篇
自动化技术   247篇
  2024年   2篇
  2023年   33篇
  2022年   91篇
  2021年   114篇
  2020年   47篇
  2019年   43篇
  2018年   73篇
  2017年   58篇
  2016年   68篇
  2015年   58篇
  2014年   54篇
  2013年   107篇
  2012年   91篇
  2011年   101篇
  2010年   65篇
  2009年   67篇
  2008年   54篇
  2007年   45篇
  2006年   33篇
  2005年   21篇
  2004年   23篇
  2003年   15篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   7篇
  1997年   9篇
  1996年   9篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   1篇
  1985年   1篇
  1977年   2篇
  1976年   3篇
排序方式: 共有1319条查询结果,搜索用时 15 毫秒
61.
A simple top-down fabrication technique that involves scanning probe lithography on Si is presented. The writing procedure consists of a chemically selective patterning in mesitylene. Operating in an organic media is possible to perform local oxidation or solvent decomposition during the same pass by tuning the applied bias. The layer deposited with a positively biased tip with sub-100-nm lateral resolution consists of nanocrystalline graphite, as verified by Raman spectroscopy. The oxide pattern obtained in opposite polarization is later used as a mask for dry etching, showing a remarkable selectivity in SF6 plasma, to produce Si nanofeatured molds.  相似文献   
62.
Drying processes generally cause volume and surface change of foodstuffs. Information on the porous structure and the mechanical properties of dried food products is needed for determining food quality, process design and estimating properties such as density and moisture diffusivity.In this work we investigated the structural changes induced in eggplant by convective air drying at four different temperatures (40, 50, 60 and 70 °C) and their effect on the subsequent rehydration process. Drying and rehydration kinetic curves were also measured.The changes in physical properties, such as porosity, pore-size distribution and bulk density were determined by Hg porosimetry, scanning electron microscopy and optical microscopy while their effect on the textural characteristics by dynamometric measurements.As expected, the increase of the drying air temperature causes shorter drying times. The drying temperature influences strongly the microstructure of dried samples: the porosity increases with the air temperature, but the structure is better preserved at intermediate temperature (60 °C) as confirmed by the lower firmness values with respect to the other dehydrated samples (40, 50 and 70 °C). In these latter, the longer drying time and the higher temperature, respectively, causes the development of a wrinkled structure. In particular, at 70 °C the structure of dehydrated samples appears totally broken with a consequent faster water uptake during rehydration.  相似文献   
63.
A convenient photochemical flow protocol for the formation of aryl‐carbon bonds via photogenerated phenyl cations has been developed. A wide range of phenylated products, including biaryls, allylarenes, 2‐arylacetals and benzyl γ‐lactones, was smoothly synthesized in satisfactory yields under metal‐free conditions. The adoption of a flow reactor often allowed us to adopt higher concentrations of substrates and shorter irradiation times compared to those usually employed in batch systems.

  相似文献   

64.
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies.  相似文献   
65.
In this work ultrasonic atomization process is applied to produce biopolymer microparticles with potential applications in pharmaceutical and nutraceutical fields. Natural polymer (alginate)/water solution is atomized by ultrasonic assisted process and the droplets spray is reticulated using a solution of copper sulfate, where the Cu2+ ions cause the formation of a network structure (hard porous gel). Several operating parameters (solution concentration, flow rate, atomization power) are changed to study their effects on the produced microparticles. Literature correlations able to predict the features of the droplets as functions of process parameters are optimized using a statistical approach. Furthermore, the energy requirement for the drops production is compared with the energy required by traditional techniques to evaluate the intensification effect of the ultrasonic on the atomization process.  相似文献   
66.
The potential of methane steam reforming at microscale is theoretically explored. To this end, a multifunctional catalytic plate microreactor, comprising of a propane combustion channel and a methane steam reforming channel, separated by a solid wall, is simulated with a pseudo 2‐D (two‐dimensional) reactor model. Newly developed lumped kinetic rate expressions for both processes, obtained from a posteriori reduction of detailed microkinetic models, are used. It is shown that the steam reforming at millisecond contact times is feasible at microscale, and in agreement with a recent experimental report. Furthermore, the attainable operating regions delimited from the materials stability limit, the breakthrough limit, and the maximum power output limit are mapped out. A simple operation strategy is presented for obtaining variable power output along the breakthrough line (a nearly iso‐flow rate ratio line), while ensuring good overlap of reaction zones, and provide guidelines for reactor sizing. Finally, it is shown that the choice of the wall material depends on the targeted operating regime. Low‐conductivity materials increase the methane conversion and power output at the expense of higher wall temperatures and steeper temperature gradients along the wall. For operation close to the breakthrough limit, intermediate conductivity materials, such as stainless steel, offer a good compromise between methane conversion and wall temperature. Even without recuperative heat exchange, the thermal efficiency of the multifunctional device and the reformer approaches ~65% and ~85%, respectively. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
67.
The preparation of new rubber based nanocomposites by using properly modified organophilic clays is described. A commercial organophilic montmorillonite containing a hydroxylated ammonium ion is reacted with LPBs. The reaction causes a decrease of the polarity of the clay and a great increase of the interlayer distance. The modified organoclays are successfully dispersed into rubber matrices (SBR or BR) by melt blending in an internal batch mixer. SAXS analyses and TEM micrographs revealed the formation of highly exfoliated nanocomposites containing intercalated stacks made of few lamellae.

  相似文献   

68.
A small library of cyclic RGD pentapeptide mimics, including benzyl-substituted azabicycloalkane amino acids, was synthesized with the aim of developing active and selective integrin antagonists. In vitro binding assays established one particular compound with affinity for both the alpha(v)beta(3) and the alpha(v)beta(5) integrins. The synthesis in solution and the in vitro screening of these RGD derivatives, as well as the determination of the conformational properties of the integrin ligands by spectroscopic and computational methods are described.  相似文献   
69.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   
70.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号