首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5141篇
  免费   361篇
  国内免费   19篇
电工技术   42篇
综合类   2篇
化学工业   1065篇
金属工艺   97篇
机械仪表   116篇
建筑科学   249篇
矿业工程   10篇
能源动力   160篇
轻工业   411篇
水利工程   68篇
石油天然气   18篇
无线电   407篇
一般工业技术   1257篇
冶金工业   722篇
原子能技术   9篇
自动化技术   888篇
  2024年   14篇
  2023年   58篇
  2022年   97篇
  2021年   171篇
  2020年   147篇
  2019年   148篇
  2018年   171篇
  2017年   160篇
  2016年   199篇
  2015年   156篇
  2014年   252篇
  2013年   336篇
  2012年   396篇
  2011年   490篇
  2010年   310篇
  2009年   261篇
  2008年   343篇
  2007年   302篇
  2006年   255篇
  2005年   209篇
  2004年   165篇
  2003年   133篇
  2002年   144篇
  2001年   87篇
  2000年   64篇
  1999年   42篇
  1998年   46篇
  1997年   43篇
  1996年   39篇
  1995年   27篇
  1994年   35篇
  1993年   29篇
  1992年   22篇
  1991年   14篇
  1990年   14篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   11篇
  1985年   15篇
  1984年   8篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   13篇
  1975年   4篇
  1973年   3篇
排序方式: 共有5521条查询结果,搜索用时 28 毫秒
71.
The identification of a 36 kb welwitindolinone (wel) biosynthetic gene cluster in Hapalosiphon welwitschii UTEX B1830 is reported. Characterization of the enzymes responsible for assembling the early biosynthetic intermediates geranyl pyrophosphate and 3‐((Z)‐2′‐isocyanoethenyl)indole as well as a dedicated N‐methyltransferase in the maturation of N‐methylwelwitindolinone C isothiocyanate solidified the link between the wel pathway and welwitindolinone biosynthesis. Comparative analysis of the ambiguine and welwitindolinone biosynthetic pathways in two different organisms provided insights into the origins of diverse structures within hapalindole‐type molecules.  相似文献   
72.
Equinatoxin II (EqtII), a sea anemone cytolysin, is known to oligomerize to form pores that spontaneously insert into membranes. Crystallographic and cryo‐EM studies of structurally similar cytolysins offer contradictory evidence for pore stoichiometry. Here we used single‐molecule photobleaching of fluorescently labeled EqtII to determine the stoichiometry of EqtII oligomers in supported lipid bilayers. A frequency analysis of photobleaching steps revealed a log‐normal distribution of stoichiometries with a mean of 3.4±2.3 standard deviations. Comparison of our experimental data with simulations of fixed stoichiometries supports our observation of a heterogeneous distribution of EqtII oligomerization. These data are consistent with a model of EqtII stoichiometry where pores are on average tetrameric, but with large variation in the number of subunits in individual pores.  相似文献   
73.
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA‐based logic gates in which DNAzyme catalysis is controlled via toehold‐mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.  相似文献   
74.
Modulating epigenetic mechanisms in malarial parasites is an emerging avenue for the discovery of novel antimalarial drugs. Previously we demonstrated the potent in vitro and in vivo antimalarial activity of (1‐benzyl‐4‐piperidyl)[6,7‐dimethoxy‐2‐(4‐methyl‐1,4‐diazepin‐1‐yl)‐4‐quinazolinyl]amine (BIX01294; 1 ), a known human G9a inhibitor, together with its dose‐dependent effects on histone methylation in the malarial parasite. This work describes our initial medicinal chemistry efforts to optimise the diaminoquinazoline chemotype for antimalarial activity. A variety of analogues were designed by substituting the 2 and 4 positions of the quinazoline core, and these molecules were tested against Plasmodium falciparum (3D7 strain). Several analogues with IC50 values as low as 18.5 nM and with low mammalian cell toxicity (HepG2) were identified. Certain pharmacophoric features required for antimalarial activity were found to be analogous to the previously published SAR of these analogues for G9a inhibition, thereby suggesting potential similarities between the malarial and human HKMT targets of this chemotype. Physiochemical, in vitro activity, and in vitro metabolism studies were also performed for a select set of potent analogues to evaluate their potential as antimalarial leads.  相似文献   
75.
New carbon composite materials were prepared by pyrolysis of mixture of coffee wastes and red mud at 700 °C with the inorganic: organic ratios of 1.9 (CC-1.9) and 2.2 (CC-2.2). These adsorbents were used to remove reactive orange 16 (RO-16) and reactive red 120 (RR-120) textile dyes from aqueous solution. The CC-1.9 and CC-2.2 materials were characterized using Fourier transform infrared spectroscopy, Nitrogen adsorption/desorption curves, scanning electron Microscopy and X-ray diffraction. The kinetic of adsorption data was fitted by general order kinetic model. A three-parameter isotherm model, Liu isotherm model, gave the best fit of the equilibrium data (298 to 323 K). The maximum amounts of dyes removed at 323 K were 144.8 (CC-1.9) and 139.5 mg g?1 (CC-2.2) for RO-16 dye and 95.76 (CC-1.9) and 93.80 mg g?1 (CC-2.2) for RR-120 dye. Two simulated dyehouse effluents were used to investigate the application of the adsorbents for effluent treatment.  相似文献   
76.
Aberration correction of the scanning transmission electron microscope (STEM) has made it possible to reach probe sizes close to 1 Å at 60 keV, an operating energy that avoids direct knock-on damage in materials consisting of light atoms such as B, C, N and O. Although greatly reduced, some radiation damage is still present at this energy, and this limits the maximum usable electron dose. Elemental analysis by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark field (ADF) imaging, for which the signal is larger. Because of its strong Z dependence, ADF allows the chemical identification of individual atoms, both heavy and light, and it can also record the atomic motion of individual heavy atoms in considerable detail. We illustrate these points by ADF images and EELS of nanotubes containing nanopods filled with single atoms of Er, and by ADF images of graphene with impurity atoms.  相似文献   
77.
A scanning laser Doppler vibrometer (LDV) can acquire non-contact vibration measurements from a structure with high spatial detail in an automated manner; one only need redirect the laser via computer-controlled mirrors to acquire measurements at additional points. However, since most LDV systems are only capable of measuring one point at a time, conventional scanning vibrometry cannot be effectively employed in some situations, for example when the time record is long at each measurement point or when the structure changes with time. Conventional scanning LDV systems are also difficult to employ with impact excitation because there is considerable variation in the impact location, angle and the character of the impacts, which leads to errors in the mode shapes that are extracted from the measurements. This paper presents a method by which one can determine the mode shapes, natural frequencies and damping ratios of a structure from as little as one response record by sweeping the laser continuously over the vibrating structure as the measurement is acquired. A novel resampling approach is presented that transforms the continuous-scan measurements into pseudo-frequency response functions, so they can be processed using standard identification routines to find the modal parameters of the structure. Specifically, this work employs a standard multi-input–multi-output identification routine and the complex mode indicator function to the continuous-scan laser Doppler vibrometry (CSLDV) measurements. The method makes no assumptions regarding the shape or properties of the surface and only requires that the laser scan periodically and that the structure vibrate freely. The method is demonstrated experimentally on a free–free beam, identifying the first nine mode shapes of the beam at hundreds of points from a few time histories. For this system, this represents a two-order of magnitude reduction in the time needed to acquire measurements with the LDV.  相似文献   
78.
The material response of polycrystalline materials under cyclic loading is not fully understood. Even during uniaxial loading, individual grains embedded within the polycrystalline material can experience complicated strain histories. By quantifying the deformation state at the crystal level, we can begin to understand the conditions that lead to fatigue failure. An in situ powder diffraction method was developed and employed at the Cornell High Energy Synchrotron Source to measure the aggregate crystal response at various points in a material's life using synchrotron x ray. A set of experiments was conducted using a load frame capable of exerting cyclic uniaxial loads on a specimen. A high speed x-ray shutter was developed to synchronize the x-ray beam and the loading cycle. Using the high speed shutter, the evolution of the lattice strains for the families of crystallographic planes was measured while the aggregate was under cyclic uniaxial loading, thus monitoring a live evolution of lattice strain in a cyclically loaded specimen. The methodology is demonstrated using uniaxial cyclic specimens machined from oxygen free conductivity (OFHC) copper sheet.  相似文献   
79.
The development of flexible organic light emitting diode displays and flexible thin film photovoltaic devices is dependent on the use of flexible, low-cost, optically transparent and durable barriers to moisture and/or oxygen. It is estimated that this will require high moisture barriers with water vapor transmission rates (WVTR) between 10(-4) and 10(-6) g/m(2)/day. Thus there is a need to develop a relatively fast, low-cost, and quantitative method to evaluate such low permeation rates. Here, we demonstrate a method where the resistance changes of patterned Ca films, upon reaction with moisture, enable one to calculate a WVTR between 10 and 10(-6) g/m(2)/day or better. Samples are configured with variable aperture size such that the sensitivity and/or measurement time of the experiment can be controlled. The samples are connected to a data acquisition system by means of individual signal cables permitting samples to be tested under a variety of conditions in multiple environmental chambers. An edge card connector is used to connect samples to the measurement wires enabling easy switching of samples in and out of test. This measurement method can be conducted with as little as 1 h of labor time per sample. Furthermore, multiple samples can be measured in parallel, making this an inexpensive and high volume method for measuring high moisture barriers.  相似文献   
80.
Thermal conductivity of one-dimensional nanostructures, such as nanowires, nanotubes, and polymer chains, is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics, energy conversion, and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However, the sensitivity of these techniques is generally limited to 1 × 10(-9) W∕K, which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10(-11) and 10(-10) W∕K. In this paper, we demonstrate an experimental technique which is capable of measuring thermal conductance of ~10(-11) W∕K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductance measurement of 1 × 10(-11) W∕K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Ge nanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号