首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5091篇
  免费   392篇
  国内免费   19篇
电工技术   39篇
综合类   2篇
化学工业   1047篇
金属工艺   97篇
机械仪表   117篇
建筑科学   249篇
矿业工程   10篇
能源动力   160篇
轻工业   409篇
水利工程   68篇
石油天然气   17篇
无线电   410篇
一般工业技术   1253篇
冶金工业   727篇
原子能技术   9篇
自动化技术   888篇
  2024年   7篇
  2023年   55篇
  2022年   81篇
  2021年   171篇
  2020年   144篇
  2019年   147篇
  2018年   170篇
  2017年   160篇
  2016年   199篇
  2015年   157篇
  2014年   252篇
  2013年   336篇
  2012年   396篇
  2011年   490篇
  2010年   310篇
  2009年   260篇
  2008年   343篇
  2007年   302篇
  2006年   255篇
  2005年   209篇
  2004年   165篇
  2003年   133篇
  2002年   145篇
  2001年   88篇
  2000年   64篇
  1999年   43篇
  1998年   49篇
  1997年   44篇
  1996年   40篇
  1995年   27篇
  1994年   35篇
  1993年   29篇
  1992年   22篇
  1991年   14篇
  1990年   14篇
  1989年   17篇
  1988年   10篇
  1987年   10篇
  1986年   11篇
  1985年   15篇
  1984年   8篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   13篇
  1976年   4篇
  1975年   4篇
排序方式: 共有5502条查询结果,搜索用时 15 毫秒
991.
The surface energy and adhesion dynamics of pressure sensitive adhesives-like networks (PSA-LNs) as mimics for PSAs were studied using JKR-based contact mechanics and peel tests. Acrylic acid (AA) was co-polymerized with 2-ethyl hexyl acrylate (2-EHA) and 1,6-hexane diol diacrylate (HDDA) to create PSA-LNs. The measured surface energy (27 to 31 mJ/m2) was sensible as surmised from their structure. Acrylic acid content increases the surface energy, threshold adhesion energy and adhesion hysteresis of PSA-LNs. Measurements of adhesion dynamics showed a dependence of adhesion energy to the 0.6–0.8 power of crack speed, depending upon the model chosen for analysis of the data. When compared with actual pressure-sensitive adhesive tape peel tests, the adhesion dynamics data predicted the peel strength. This study shows a direct relationship between threshold adhesion energy, crack propagation mechanics and peel strength measurements.  相似文献   
992.
Lithium transition metal phosphates have the capability of improving cathode energy densities up to 800 Wh kg?1, a 27 % increase over conventional cathode active material energy densities. In this study, the effect of base-to-acid (NH4OH:H3PO4) stoichiometric conditions on the intrinsic reversible capacity of lithium cobalt phosphate (LiCoPO4) active material are investigated through microwave synthesis and electrochemical testing. Variation in solution pH results in an increase of 69 mAh g?1 in achievable capacity. X-ray diffraction results show highly crystalline LiCoPO4, with particle sizes ranging from 200 nm to greater than 1 μm based upon scanning electron microscopy. Electrochemical analysis with 1 M LiPF6 EC:EMC (1:2 v/v) provides the highest capacity over multiple cycles. A discharge capacity of 128 mAh g?1 (78 % of theoretical capacity) is achievable for intrinsic LiCoPO4 without further treatment (e.g., carbon coating) at an effective 0.1 C rate with a proper constant current–constant voltage step. Analysis of reported synthesis techniques shows that microwave synthesis yields the highest capacity for the intrinsic LiCoPO4 material to date.  相似文献   
993.
We have synthesized segmented polyurethane (SPU)/silica nanoparticle (SiNP) nanocomposites with extraordinarily high tensile strength and strain-at-break using an in-situ polymerization method with low SiNP concentrations. A 20-fold increase in strain-at-break compared with the pristine polymer has been achieved for the 0.5 wt% SiNP nanocomposites. A suite of characterization tools including transmission electron microscopy, ultra-small angle X-ray scattering, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis has been used to correlate the phase morphology, crystallization, and mechanical properties. The location of SiNP in the phase separated SPU is believed to be the main reason for the mechanical property enhancement.  相似文献   
994.
A series of isotactic polypropylene and nylon 6 blends with silsesquioxane (POSS) additives were produced, then layered to nanometer thicknesses to test the effects of confinement upon polymer property modification. POSS is shown to be a poor filler, lacking solubility and favorable interaction with the polymer matrices. It was initially hypothesized that under extreme confinement and orientation, such as in melt-spun fibers, or confined within 2D nanoscale layers, that POSS would undergo forced-assembly into elongated, rebar-like reinforcement structures, or even act as crosslinking molecules for the polymer chains. The current results, however, show POSS existing as large, phase separated aggregates, in order to minimize interactions with the polymer matrix; the aggregates behave as debonded hard particles upon tensile deformation. POSS has been previously shown to enhance the properties of polymer matrices in which the POSS molecules have been grafted to, or copolymerized within the chain, but this is not the case for these POSS blends. In comparison to results from the iPP/DBS/TPOSS system, in which POSS is unable to directly interact with the polymer matrix, and the nylon 6/APOSS system, in which POSS can potentially form hydrogen bonds with the polymer matrix, the results are similar and reveal that POSS blends are largely incompatible with the polymer matrix. Small improvements in blend properties can be made via functionalization of the POSS cage, in order to enhance interactions, but these improvements are quite limited.  相似文献   
995.
We consider the broadcasting problem in multi-radio multi-channel ad hoc networks. The objective is to minimize the total cost of the network-wide broadcast, where the cost can be of any form that is summable over all the transmissions (e.g., the transmission and reception energy, the price for accessing a specific channel). Our technical approach is based on a simplicial complex model that allows us to capture the broadcast nature of the wireless medium and the heterogeneity across radios and channels. Specifically, we show that broadcasting in multi-radio multi-channel ad hoc networks can be formulated as a minimum spanning problem in simplicial complexes. We establish the NP-completeness of the minimum spanning problem and propose two approximation algorithms with order-optimal performance guarantee. The first approximation algorithm converts the minimum spanning problem in simplical complexes to a minimum connected set cover (MCSC) problem. The second algorithm converts it to a node-weighted Steiner tree problem under the classic graph model. These two algorithms offer tradeoffs between performance and time-complexity. In a broader context, this work appears to be the first that studies the minimum spanning problem in simplicial complexes and weighted MCSC problem.  相似文献   
996.
Wireless communications are vulnerable to signal jamming attacks. Spread spectrum mitigates these attacks by spreading normal narrowband signals over a much wider band of frequencies and forcing jammers who do not know the spreading pattern to expend much more effort to launch the attack. In broadcast systems, however, jammers can easily find out the spread pattern by compromising just a single receiver. Several group-based ideas have been proposed to deal with compromised receivers; they can tolerate up to t malicious receivers by adding 2t extra copies for each broadcast message. In this paper, we propose a novel scheme with random channel sharing. This scheme reduces the communication cost from 2t to (1 + p)t extra copies, where p determines the channel sharing probability (0 < p < 1). In addition, it does not increase the hardware complexity as it does not require a receiver to operate on multiple channels at the same time.  相似文献   
997.
In this work, we examine the optical properties of tin naphthalocyanine dichloride (SnNcCl2), and its performance as an electron donor material in organic photovoltaic cells (OPVs). As an active material, SnNcCl2 is attractive for its narrow energy gap which facilitates optical absorption past a wavelength of λ = 1100 nm. We demonstrate a power conversion efficiency of ηP = (1.2 ± 0.1)% under simulated AM1.5G solar illumination at 100 mW/cm2 using the electron donor–acceptor pairing of SnNcCl2 and C60 in a bilayer device architecture. While some phthalocyanines have been previously used to improve infrared absorption, this is often realized through the formation of molecular dimers. In SnNcCl2, the infrared absorption is intrinsic to the molecule, arising as a result of the extended conjugation. Consequently, it is expected that SnNcCl2 could be utilized in bulk heterojunction OPVs without sacrificing infrared absorption.  相似文献   
998.
Inspired by biomineralization, biomimetic approaches utilize biomolecules and synthetic analogs to produce materials of controlled chemistry, morphology, and function under relatively benign conditions. A common characteristic of biological and biomimetic mineral‐forming processes is the generation of mineral/biomolecule nanocomposites. In this work, it is demonstrated that a facile chemical reaction may be utilized to halogenate the nitrogen‐containing moieties of the organics entrapped within bio‐inorganic composites to yield halamine compounds. This process provides rapid and potent bactericidal activity to biomimetically and biologically produced materials that otherwise lack such functionality. Additionally, bio‐inorganic composites containing the chlorinated peptide protamine are effective in rapidly neutralizing Bacillus spores (≥99.97% reduction in colony forming units within 10 min). The straightforward nature of the described process, and the efficacy of halamine compounds in neutralizing biological and chemical agents, provide new applicability to biogenic and biomimetic materials.  相似文献   
999.
The unique inwards interweaving morphology of polyamines and polyacids within agarose hydrogels that leads to the formation of striated shells with different porosities within the spherical scaffold is reported. Microcompartments with sophisticated structures are commonly used in drug delivery, tissue engineering, and other biomedical applications. However, a method capable of producing well‐defined, multiporous shells within a single compartment is still lacking. By the alternating deposition of polyallylamine (PA) and polystyrenesulfonic acid (PSS) in 1‐butanol, at equal mass ratios, multiple levels of porosity are generated within an agarose microsphere. Each level of porosity is represented by a well‐defined, concentric shell of interweaving PA and PSS layers. The number, thickness, and porosity of the striated shells can be easily controlled by varying the number of PA/PSS bilayers and the polymer concentration, respectively. The feasibility of utilizing this morphology for the assembly of a multi‐shell porous spherical scaffold is validated by trapping different molecular weight dextrans within different regions of porosity. The unique interaction of polyacids and polyamines in hydrogels represents a facile and inexpensive approach to the development of intricate scaffold architectures.  相似文献   
1000.
Oxidation of MCrAlX (M = Ni and Co; X = Y or Re) bond coats was carried out at 1,125 °C in a range of N2–O2–H2O environments. A three-step process of (1) oxidation, (2) taper-polishing, and (3) re-oxidation was used to evaluate steady state development of thermally grown oxide (TGO). During initial oxidation, transient (Ni,Co)(Al,Cr)2O4 spinel formed above α-Al2O3. Following taper-polishing, no new spinel grew during 1–200 h of re-oxidation in any water vapor environment; spinel growth at the TGO surface by a steady state mechanism—owing to Al-depletion of the bond coat, as predicted elsewhere—was deemed unlikely. Observations of transient spinel volatilizing in wet environments were supported by measurements of nickel volatilizing from pre-fabricated NiAl2O4 spinel pellets as a function of humidity. In some cases, following volatilization, water promoted vapor phase-redeposition of spinel onto adjacent specimen surfaces. Spinel-related conclusions from past humid oxidation experiments for which volatilization phenomena were not considered—and especially for which Al-depletion of the bond coat is cited as the cause for spinel growth—should be reevaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号