首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
化学工业   31篇
金属工艺   1篇
建筑科学   4篇
能源动力   9篇
轻工业   8篇
水利工程   1篇
无线电   7篇
一般工业技术   34篇
冶金工业   6篇
原子能技术   3篇
自动化技术   20篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   11篇
  2016年   6篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   13篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有125条查询结果,搜索用时 10 毫秒
21.

Due to the rapid increase in the speed as well as the number of users over the Internet, the rate of data generation is enormously grown. In addition, at the same rate, the multimedia transmission especially the usage of VoIP calls is rapidly growing due to its cost effectiveness, dramatic functionality over the traditional telephone network and its compatibility with public switched telephone network (PSTN). In most of the developing countries, internet service providers (ISPs) and telecommunication authorities are concerned in detecting such calls to either block or prioritize commercial VoIP. Signature-based, port-based, and pattern-based detection techniques are inaccurate due to the complex and confidential security and tunneling mechanisms used by VoIP. Therefore, in this paper, we proposed a generic, robust, efficient statistical analysis-based solution to identify encrypted and tunneled voice media flows. We extracted six statistical parameters, which are extracted for each flow and compared with threshold values while generating a number of rules to identify VoIP media calls. The paper also offers a complete architecture that can efficiently process high-speed traffic in order to detect VoIP flows at real-time. The proposed system, including the architecture and the algorithm, can be practically implemented in a real environment, such as ISP or telecommunication authority’s gateway. We implemented the system using the parallel environment of Hadoop ecosystem with Spark on the top of it to achieve the real-time processing. We evaluated the system by considering 1) the accuracy in terms of detection rate by computing the direct rate and false positive rate and 2) the efficiency in terms of processing power. The result shows that the system has 97.54% direct rate and .00015% false positive rate, which are quite high. The comparative study proved that the proposed system is more accurate than the existing techniques.

  相似文献   
22.
Quite puzzling issue in biology is how sperm cells are selected naturally where human sperm has to maintain a correct swimming behavior during the various stages of reproduction process. In nature, sperm has to compete a long journey from cervix to oocyte to stand a chance for fertilization. Although various guidance mechanisms such as chemical and thermal gradients are proposed previously, these mechanisms may only be relevant as sperm reaches very close to the oocyte. Rheotaxis, a phenomenon where sperm cells swim against the flow direction, is possibly the long-range sperm guidance mechanism for successful fertilization. A little is known quantitatively about how flow shear effects may help guide human sperm cells over long distances. Here, we have developed microfluidic devices to quantitatively investigate sperm rheotaxis at various physiological flow conditions. We observed that at certain flow rates sperm actively orient and swim against the flow. Sperm that exhibit positive rheotaxis show better motility and velocity than the control (no-flow condition), however, rheotaxis does not select sperm based on hyaluronic acid (HA) binding potential and morphology. Morphology and HA binding potential may not be a significant factor in sperm transport in natural sperm selection.  相似文献   
23.
Conventional approaches of regulating natural biochemical and biological processes are greatly hampered by the complexity of natural systems. Therefore, current biotechnological research is focused on improving biological systems and processes using advanced technologies such as genetic and metabolic engineering. These technologies, which employ principles of synthetic and systems biology, are greatly motivated by the diversity of living organisms to improve biological processes and allow the manipulation and reprogramming of target bioreactions and cellular systems. This review describes recent developments in cell biology, as well as genetic and metabolic engineering, and their role in enhancing biological processes. In particular, we illustrate recent advancements in genetic and metabolic engineering with respect to the production of bacterial cellulose (BC) using the model systems Gluconacetobacter xylinum and Gluconacetobacter hansenii. Besides, the cell-free enzyme system, representing the latest engineering strategies, has been comprehensively described. The content covered in the current review will lead readers to get an insight into developing novel metabolic pathways and engineering novel strains for enhanced production of BC and other bioproducts formation.  相似文献   
24.
This research work reports on development and characterization of multi-walled carbon nanotube (MWCNT)-doped polyvinylidene difluoride (PVDF) nanofibers by the electrospinning method. PVDF is an extensively studied polymer both theoretically and experimentally due to its appealing ferroelectric, piezoelectric, and pyroelectric properties which strongly favors its promising applications in the development of micro/nanostructure devices. The foremost reason for its ferroelectric and piezoelectric behaviors has been attributed to its crystalline structure, specifically the presence of β-phase; however, the existence of the small percentage of β-phase in pristine PVDF limits its applications. To enhance the electroactive features in the PVDF, MWCNTs have been doped in it to prepare electrospun nanofibers, as electrospinning is a single-step approach. These nonwoven nanofibers were prepared at a DC voltage of 20 kV which were subsequently calcined at 100 °C for 12 h. The estimation of crystal structure and phase identification in these nanofibers have been determined by attenuated FT-IR and XRD, while the morphology, microstructure, mean diameter, and length have been examined by FE-SEM. The observed electrical conductivity, capacitance, permittivity (ε), conductivity (δ), and impedance (Z) in these samples have been tailored by doping a range of MWCNT contents and optimizing the experimental conditions.  相似文献   
25.
In the present study effect of deflocculants like P-Aminobenzoic Acid (PABA) and Cetyltrimethyl ammonium bromide (CTAB) on densification and hardness of 3 mol.% Yttria-stabilized ZrO2 (abridged as YSZ) + Al2O3 (whiskers or particulates) composite have been studied. Maximum hardness & density were achieved at 1 wt% of CTAB or PABA, while further addition (5, 10 and 15 wt%) had no significant affect on the aforementioned properties. It was also observed that alumina addition in form of particulates only improved the density while its addition in form of whiskers significantly increased the hardness of YSZ + alumina composite. The maximum hardness achieved was more than 14 GPa in case of sample containing alumina in form of whiskers.  相似文献   
26.
Abstract

Application of the lattice Boltzmann method has been extended for the analysis of combined transient conduction and radiation heat transfer through highly porous fibrous insulation media. Firstly, LBM has been employed for the analysis of combined mode of transient conduction radiation heat transfer in a 2?D rectangular enclosure containing an absorbing, emitting and scattering medium and results are compared with already published ones. The results have been found in good accord for different values of radiation-conduction parameter, scattering albedo and south (hot) wall emissivity. Furthermore, the proposed LBM for the calculation of effective thermal conductivity of ceramic fiber board has been employed. A random-generation growth method for generating micro morphology of natural ceramic fiber board has been selected. The conductive, radiative and effective thermal conductivity has been numerically estimated using the present LBM. It is found that the predicted effective thermal conductivity for different values of fibrous bulk density is in good agreement with the experimental data.  相似文献   
27.
Strength properties and dynamic coefficient of friction of popcorn kernels were evaluated as a function of moisture content in the range of 7.78–16.72 g/100 g dry solids. In order to determine strength properties of the kernels that are in terms of deformation at rupture point, rupture force, energy absorbed, hardness, and toughness of the popcorn kernels were quasi-statically loaded between two parallel plates. To determine frictional properties, friction tests were performed on aluminum, steel, and fiberglass surfaces. The values related to the strength properties, in general, decreased as the moisture content increased. On the other hand, the dynamic coefficient of friction of the popcorn kernels increased with increasing moisture content.  相似文献   
28.
Synthesis of micro-pipes of YBa2Cu3O7−δ superconductor has been carried out for the first time by using chemical method. The shape, size and length of these micro-pipes depends upon dimensions of growth matrix and structure of geometry, i.e., circular, square, rectangular and hexagonal, etc., which could be uniformly coated with superconductor. The onset temperature of diamagnetism of the material is found to be 93 K, which is not shifted to lower values by the application of DC magnetic field; this is most likely due to large surface area provided by micro-pipes to the shielding currents. These micro-pipes behave as pinning centers, hence they can be used for the fabrication of devices that are capable of working in high magnetic fields.   相似文献   
29.
The role of chloride ions in the pitting corrosion of some Al–Si alloys was investigated by chemical, polarization and EIS measurements, as well as SEM studies. Differences in corrosion rates of pure aluminium and the alloys are discussed. The capacitive behaviour of the oxide covered surface is replaced by resistive behaviour as immersion time increases in HCl solutions. At neutral pH corrosion currents increase then decrease with chloride ion concentrations. Pitting by chloride ions initiates more readily in acidic media.  相似文献   
30.
Antimicrobial behavior of lactic acid bacteria (LAB) has been explored since many years to assess their ability to produce bacteriocin, a natural preservative, to increase the shelf life of food. This study aims to characterize bacteriocin producing strains of lactic acid bacteria isolated from acidic to slightly acidic raw vegetables including tomato, bell pepper and green chili and to investigate their potential to inhibit food related bacteria. Among twenty nine LAB screened for antimicrobial activity, three exhibited antagonism against closely related bacterial isolates which was influenced by varying temperature and pH. They were identified up to strain level as Lactococcus lactis subsp. lactis TI-4, L. lactis subsp. lactis CE-2 and L. lactis subsp. lactis PI-2 based on 16S rRNA gene sequence. Their spectrum of inhibition was observed against food associated strains of Bacillus subtilis and Staphylococcus aureus. Moreover, L. lactis subsp. lactis PI-2 selected on the basis of higher antimicrobial activity was further evaluated for bacteriocin production which was detected as nisin A and nisin Z. These findings suggest the possible use of L. lactis strains of vegetable origin as protective cultures in slightly acidic as well as slightly alkaline food by the bio-preservative action of bacteriocins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号